- #1

AtoZ

- 10

- 0

##i\dot{\psi_n}=X~\psi_n+\frac{C~\psi_n+D~a~\psi^\ast_{n+1}+E~b~\psi_{n+1}}{1+\beta~(D~\psi^\ast_{n+1}+E~\psi_{n+1})}##

where ##E,b,D,a,C,X## are constants. I have the ansatz

##\psi_n=A_n~e^{ixt}+B^\ast_n~e^{-itx^\ast}##, ##x## and ##A_n,B_n## are complex. I have to equate coefficients of ##e^{ixt}## and ##e^{-itx^\ast}##, I get

##-xA_n~e^{ixt}+x^*B^\ast_n~e^{-itx^*}=\left[X~(A_n~e^{ixt}+B^\ast_n~e^{-itx^\ast})+\frac{C~(A_n~e^{ixt}+B^\ast_n~e^{-itx^\ast})+D~a~(A_{n+1}^*~e^{-itx^*}+B_{n+1}~e^{ixt})+E~b~(A_{n+1}~e^{ixt}+B^*_{n+1}~e^{-itx^*})}{1+\beta~[D~(A_{n+1}^*~e^{-itx^*}+B_{n+1}~e^{ixt})+E~(A_{n+1}~e^{ixt}+B^*_{n+1}~e^{-itx^*})]}\right]##

Now to equate coefficients of say ##e^{ixt}##, I get

##-xA_n=XA_n+\frac{C~A_n+D~a~B_{n+1}+E~b~A_{n+1}}{1+\beta(D~B_{n+1}+E~A_{n+1})}## is true? or the denominator has to be written in full?