What Calculus Book Can Help Understand Goldstein's Classical Mechanics?

  • Context: Classical 
  • Thread starter Thread starter Shakir
  • Start date Start date
  • Tags Tags
    Book Calculus
Click For Summary

Discussion Overview

The discussion revolves around the challenges faced by a participant in understanding the calculus concepts presented in Goldstein's Classical Mechanics. The focus is on identifying suitable resources or books that could aid in grasping the mathematical methods used in the text, particularly in relation to summation and integration techniques.

Discussion Character

  • Homework-related
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • One participant expresses difficulty with the mathematical notation and concepts in Goldstein's text, particularly regarding summation and integration methods.
  • Another participant suggests that the issues may stem from differences in notation between mathematics and physics, noting that the representation of derivatives can be confusing.
  • A later reply identifies specific notations that may not be standard in typical calculus courses, such as summing over an index and using dots for time derivatives.
  • Resources are proposed, including Feynman's lectures on calculus of variations and a specific book that may help clarify the concepts.

Areas of Agreement / Disagreement

Participants generally agree that the notation and methods in physics can differ from standard calculus teachings, leading to confusion. However, there is no consensus on the best resources, as different participants suggest various texts and materials.

Contextual Notes

Participants note that the understanding of certain notations and concepts may depend on prior exposure to specific calculus courses and the differences in notation between disciplines. There is also mention of potential gaps in foundational knowledge that could affect comprehension.

Who May Find This Useful

This discussion may be useful for students of physics or mathematics who are encountering difficulties with advanced calculus concepts in classical mechanics, particularly those transitioning from pure mathematics to applied physics contexts.

Shakir
Messages
8
Reaction score
4
Hello PF

I have attached two screenshots from Goldstein's Classical Mechanics. Although I have done a course on multivariable calculus, I don't understand what is going on in this math part.

Could you please provide some online resources or suggest a book so I can understand this sort of calculus? I am really stuck here.
Screenshot_2017-02-01-18-18-59-245_cn.wps.moffice_eng.png
Screenshot_2017-02-01-18-21-15-694_cn.wps.moffice_eng.png
 
Physics news on Phys.org
Could you point out what part(s) of those two pages you have an issue with? at a glance, I don't see anything that wasn't covered in my Calculus II and III courses back in the 90s.

I learned calculus with Larson & Hostetler and Varburg & Purcell, by the way. I know there are better texts out there, though.
 
Last edited:
Hello
My problem is with the summation and integration part. I do not know how to use this method. Besides I learned multivariable calculus from a MATH teacher. The notations used in physics are a bit different e.g representation of x dot x, double dot to express velocity, acceleration etc. It often becomes very confusing. Maybe I missed some concepts or did not learn properly.
 
Problem starts at 2.16 to the rest.
 
The only two pieces of notation I see that are not in a standard Calculus sequence are summing over I and the use of a dot instead of a prime for time derivative.

The sum over I just means to sum over all values of the index i. It's written that way so that the same equation can be used for systems with any number of degrees of freedom.

One thing that takes a bit of getting used to in mechanics is that you can take a derivative with respect to y-dot in an expression as though it is a totally separate variable to y. It feels odd, but it works that way and it's just one of those things that must be gotten used to.

Other than those two points, you might find the chapter on calculus of variations in Feynman's lectures helpful. It's available free here:

http://www.feynmanlectures.caltech.edu/II_19.html
 
  • Like
Likes   Reactions: Shakir

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
Replies
9
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 26 ·
Replies
26
Views
6K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 11 ·
Replies
11
Views
6K