MHB What Determines the Time Dependent Value of A[t] in Quasi-Static Approximations?

  • Thread starter Thread starter mk747pe
  • Start date Start date
  • Tags Tags
    Constant Function
mk747pe
Messages
4
Reaction score
0
Hello,

I'm working on my bachelor's thesis, and I ran into a problem. In the text they say: "For hot
oil/watering jobs, U is typically large enough that f(t) is closer to a constant temperature than
constant flux boundary condition. In the quasi-static approximation,
these integrals are solved assuming that A[t] is a constant independent of time and then the
appropriate time dependent value of A[t] is plugged into the approximate solutions."

I don't understand how to do it. What will be that "appropriate time dependent value of A[t]"?View attachment 7574

I will be grateful for any advice,
Full text in the attachment,

Thanks in advance. Full text View attachment 7575
 

Attachments

Last edited:
Physics news on Phys.org
mk747pe said:
Hello,

I'm working on my bachelor's thesis, and I ran into a problem. In the text they say: "For hot
oil/watering jobs, U is typically large enough that f(t) is closer to a constant temperature than
constant flux boundary condition. In the quasi-static approximation,
these integrals are solved assuming that A[t] is a constant independent of time and then the
appropriate time dependent value of A[t] is plugged into the approximate solutions."

I don't understand how to do it. What will be that "appropriate time dependent value of A[t]"?

I will be grateful for any advice,
Full text in the attachment,

Thanks in advance. Full text

Hi mk747pe! Welcome to MHB! ;)

Your documents seem to be missing some context.
Anyway, my current interpretation is that we presumably have a fully known function A[t].
And we want to integrate something or solve some differential equation (that I can't seem to find) that includes A[t].
To do so, we assume A[t] to be constant to make it easier to integrate or solve the equation.
That is, we replace A[t] everywhere by A.
And when we have found the solution, we replace every occurrence of A again by A[t] for an approximate solution.

Btw, since this seems to be more about understanding what it all means than about actually integrating or solving a differential equation, I'm moving your thread to Other Advanced Topics.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
59K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 12 ·
Replies
12
Views
11K
  • · Replies 13 ·
Replies
13
Views
3K