Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What do we call the function in this diagram?

  1. Feb 28, 2009 #1
    We call the function f' in this diagrams:

    [tex]\begin{displaymath}
    \begin{xy}
    *!C\xybox{
    \xymatrix{
    {E}\ar[r]^{i} \ar[d]_{f} & {X} \ar[dl]^{f'}\\
    {Y} &}}
    \end{xy}
    \end{displaymath}
    [/tex]
    the entension of function f;
    (i is an inclusion map)

    [tex]\begin{displaymath}
    \begin{xy}
    *!C\xybox{
    \xymatrix{
    {E}\ar[r]^{i} \ar[dr]_{f'} & {X} \ar[d]^{f}\\
    &{Y} }}
    \end{xy}
    \end{displaymath}
    [/tex]
    the restriction of function f;
    (i is an inclusion map)

    [tex]\begin{displaymath}
    \begin{xy}
    *!C\xybox{
    \xymatrix{
    &{E}\ar[d]^{p}\\
    {X}\ar[ur]^{f'}\ar[r]_{f} & {Y} } }
    \end{xy}
    \end{displaymath}
    [/tex]
    the lifting of function f;

    then how do we call the function f' in this this diagram:
    [tex]\begin{displaymath}
    \begin{xy}
    *!C\xybox{
    \xymatrix{
    {X}\ar[r]^{f}\ar[rd]_{f'} & {Y} \ar[d]^{p}\\
    &{E} } }
    \end{xy}
    \end{displaymath}
    [/tex]
     
  2. jcsd
  3. Feb 28, 2009 #2
    Oh,the latex codes do not display properly here.
    So my question is what is the inverse of lifting? like restriction is the inverse of extension.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook