Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What exactly do you study in reactor physics?

  1. Dec 23, 2012 #1
    Hey I am a math major looking to do an REU (and later a masters/PhD.) in nuclear engineering and I am interested in the field of reactor physics. I hear it tossed around a lot but I don't really know the definition of it. I'm taking a radiation physics class next semester at a separate technological university, but I think that it is more related to materials. Does the field of reactor physics cover both fission and fusion? I am guessing you deal mostly with the reactor core in this field. Mainly I want to be able to develop a strong mathematical background and apply my knowledge from linear algebra, functional analysis, and PDE's to some computational problems in Nuclear engineering.
     
  2. jcsd
  3. Dec 23, 2012 #2

    Astronuc

    User Avatar
    Staff Emeritus
    Science Advisor

    In general, nuclear reactor physics is devoted to fission systems, and one studies the neutron physics, either diffusion theory or transport theory.

    There are several classic texts on Nuclear Reactor Theory or Nuclear Reactor Physics:


    George Bell and Samuel Glasstone, Nuclear Reactor Theory, 1968, 1970
    John Lamarsh, Introduction to Nuclear Reactor Theory, 1972
    Weston Stacey, Nuclear Reactor Physics, 2001
    Allan F. Henry, Nuclear-Reactor Analysis, 1975

    These tend to address thermal or moderated (water or graphite) reactors, which are the basis of the commercial nuclear industry. In the case of water, it's more along the lines of pressurized water as opposed to boiling water. Emphasis at the introductory level is often on diffusion theory (Helmholtz equation), and steady-state, with some introduction to kinetics (time-dependent) theory.

    J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, 1976

    See also - https://www.physicsforums.com/showthread.php?t=243543

    Duderstadt and Hamilton goes more into transport and multigroup theory. It has been typically used at the graduate level.

    If one is interested in fast reactors, then Alan Walter and Albert Reynolds, Fast Breeder Reactors, 1981, would be of interest. It delves into the peculiarities and nuances unique to fast reactors.

    Fusion engineering deals with nuclear interactions of charged particles, nuclei and electrons, and the fusion reaction is obviously different from fission. In addition, one has to be familiar with plasma physics. Neutrons are not so important with respect to the plasma, but they are important in regard to the surrounding structure and blanket region of a fusion reactor.
     
  4. Dec 23, 2012 #3
    Hey Astronuc,

    Thanks for the detailed reply. Which of these books would you recommend as an introduction? By the way I recognized Weston Stacey, he's a professor at Ga Tech (that's where I'll be taking the radiation physics class next semester as a transient student.)
     
  5. Dec 23, 2012 #4

    jim hardy

    User Avatar
    Science Advisor
    Gold Member
    2016 Award

    For just an introduction you might consider Glasstone and Sesonske's classic "Nuclear Reactor Engineering"

    but i suggest the 1967 edition because it has a lot of practical information about the reactor systems that wasn't in Lamarsch when i took the course in 1968.


    https://www.amazon.com/Nuclear-Reactor-Engineering-Sesonske-Glasstone/dp/B0026MFBB8

    The newer edition omits a whole section on reactor instrumentation.
    This old one is inexpensive, $11 a place or two on Ebay.
    But look for that Yankee plant on the cover. The new orange starburst edition was a disappointment to me.
     
    Last edited by a moderator: May 6, 2017
  6. Dec 23, 2012 #5

    Astronuc

    User Avatar
    Staff Emeritus
    Science Advisor

    Perhaps Stacey's book would be good.

    MIT uses Elmer L. Lewis, Fundamentals of Nuclear Reactor Physics. (Academic Press, 2008. ISBN: 9780123706317) in their undergraduate Neutron Science and Reactor Physics.
    http://ocw.mit.edu/courses/nuclear-...ience-and-reactor-physics-fall-2009/index.htm

    Then there is Engineering of Nuclear Systems
    http://ocw.mit.edu/courses/nuclear-engineering/22-06-engineering-of-nuclear-systems-fall-2010/

    Other nuclear engineering courses: http://ocw.mit.edu/courses/nuclear-engineering/index.htm

    There is a simple introductory book - http://www.nr.titech.ac.jp/coe21/eng/events/NuclReactorTheoryTextbook.pdf
     
  7. Dec 28, 2012 #6
    I'd also recommend this course that has notes and I believe some lectures on reactor physics and other subjects in Nuclear Engineering. http://www.nuceng.ca/ep4d3/ep4d3home.htm

    I'd also suggest looking a bit into numerical methods for solving differential equations.
     
  8. Dec 29, 2012 #7
    Damn, I had to choose between that course and the radiation physics course next semester because they were at the same time. Oh well, Ill pick up numerical methods next year.
     
  9. Dec 29, 2012 #8
    Don't worry about it now. It shouldn't hinder you in learning the physics behind it all.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook