PeterDonis said:
I was mistaken. See my response to
@PAllen in post #25.
I did see those posts - after I made my reply, so it came out awkwards. I did find another term in addition to the third time derivative of acceleration , though, which I thought was interesting. It may tie into MTW"s "power flow" idea, that I mentioned in a different post, since mass*velocity*acceleration would represent power. That would only apply to the first term I found, though - I'm not sure how one could justify ignoring the second term, the one proportional to the third time derivative of acceleration.
The advantage of tying gravitational radiation to power flow rather than the quadrupole formula is that it's easier to communicate to the lay audience. While I can cite the appropriate reference from MTW, it's clear that they were making some assumptions in their derivation, so it's not clear how general their formula is and that makes me hesitant to present it to the lay audience who frequently wants to analyze somewhat novel scenarios.
Another minor concern is that since we do apparently have gravitational waves being emitted, to get an accurate figure for the amount of radiation emitted we need to be concerned about back reaction forces modifying the trajectory, as was done on the Hulse-Taylor binary. For the benefit of those who may not be familiar with this (I'm sure Peter is, this is for the benefit of other readers who hopefully haven't been scared off), the observation of the decay of the orbital period of this binary won the Nobel prize for it's agreement with the calculations done by General relativity.
<<link>>.
Going back to the original poster's problem, while I don't have any detailed calculations I would think that the gravitational radiation would be axis-symmetric, so I don't think it would carry momentum away from the system in the center-of-mass frame. This however, is an intuition, not a hard calculation.
Assuming this is correct, what I'd expect to happen is that the black hole and the infalling star would merge into one larger black hole, but, as in the inspiral cases that Ligo analyzes, the mass of the resulting black hole would be lower than the sum of the initial black hole mass and the star mass, the difference being carried away by the emitted gravitational waves.