Undergrad What Happens When a Rigid Body with a Fixed Point Moves Along a Closed Path?

Click For Summary
SUMMARY

The discussion centers on the mechanics of a rigid body with a fixed point, specifically analyzing the behavior of its coordinate axes when the body moves along a closed path on a unit sphere. When the axis Oz returns to its initial position, the other axes, Ox and Oy, experience a rotation that corresponds to the area enclosed by the path traced by Oz on the sphere. This relationship is established through the concept that the angle of rotation of the axes is equal to the area of the figure drawn by Oz, modulo 2π. The conversation also references Euler angles and the Gauss-Bonnet theorem as potential tools for further exploration of this phenomenon.

PREREQUISITES
  • Understanding of rigid body dynamics
  • Familiarity with coordinate frames and angular velocity
  • Knowledge of spherical geometry and area calculations
  • Basic concepts of Euler angles in mechanics
NEXT STEPS
  • Study the Gauss-Bonnet theorem and its applications in mechanics
  • Learn about Euler angles and their role in rigid body rotation
  • Explore the relationship between area and angle in spherical geometry
  • Investigate the implications of angular velocity projections in rigid body motion
USEFUL FOR

This discussion is beneficial for students and professionals in mechanics, particularly those studying rigid body dynamics, as well as educators looking for engaging problems to present in a classroom setting.

wrobel
Science Advisor
Insights Author
Messages
1,237
Reaction score
1,040
Today I read a book in mechanics and encountered a funny proposition about rigid body with fixed point. Perhaps somebody will be interested to propose it to students as a task. This proposition is almost correct:)

Consider a rigid body with a fixed point ##O##. Let ##Oxyz## be a coordinate frame connected with this rigid body. Consider a unit sphere with center at ##O## as well. Now let us move the body from the initial position such that the axis $Oz$ describes a closed curve (without self-crossings) on the sphere and the projection of body's angular velocity on ##Oz## is equal to zero identically. It turns out that when the axis ##Oz## comes to the initial position other two axes will be rotated relative their initial position. The angle of rotation equals (up to the sign) the area of a figure drawn by the axis ##Oz## on the sphere.
 
Last edited:
  • Like
Likes vanhees71 and etotheipi
Physics news on Phys.org
I don't know too much about mechanics, but how can an angle be equal to an area? Or am I not understanding it correctly?
 
wrobel said:
unit sphere
 
Sorry now I'm confused by units also.
The (origin-fixed) coordinate frame wanders about the unit circle such that the z axis draws a simple closed curve. Are you saying the inside wedge between the previous x-axis and the new x-axis has an area equal to the simple closed curve drawn on the sphere?
 
Once ##Oz## returns to its previous position, ##Ox## and ##Oy## must still define the same plane as at the start, but may be rotated from their starting positions within that plane. Meanwhile the area is that enclosed by the curve drawn on the sphere. For instance consider the simple case where ##\boldsymbol{\omega} = k \mathbf{e}_y## such that ##Oz## and ##Ox## rotate about the axis ##Oy##. When ##Oz## returns to its original position the curve bounds an area of a hemisphere, ##2\pi##, which is modulo ##2\pi## the same as the angle by which ##Ox## and ##Oy## are rotated from their original positions, ##0##.

I don't know how to prove the general case. Gauss-Bonnet theorem?
 
  • Like
Likes vanhees71, wrobel and hutchphd
etotheipi said:
I don't know how to prove the general case. Gauss-Bonnet theorem?
Oh no! It is simple. Just Euler angles and formula for the area in terms of integral along the boundary curve
 
wrobel said:
Today I read a book in mechanics and encountered a funny proposition about rigid body with fixed point. Perhaps somebody will be interested to propose it to students as a task. This proposition is almost correct:)

Consider a rigid body with a fixed point ##O##. Let ##Oxyz## be a coordinate frame connected with this rigid body. Consider a unit sphere with center at ##O## as well. Now let us move the body from the initial position such that the axis $Oz$ describes a closed curve (without self-crossings) on the sphere and the projection of body's angular velocity on ##Oz## is equal to zero identically. It turns out that when the axis ##Oz## comes to the initial position other two axes will be rotated relative their initial position. The angle of rotation equals (up to the sign) the area of a figure drawn by the axis ##Oz## on the sphere.
What do you mean by the angle of rotation of the other axes?

Let's consider a simple 360° rotation around Ox. The area enclosed on the unit sphere is 2π. All body axes return to their initial orientations, so their relative rotation is zero. Of course Oy has traversed 2π, but Ox was fixed all the time.
 
I mean that if ϕ is the angle of rotation then either ϕ=S(mod2π) or −ϕ=S(mod2π), where S is the area.
 
Last edited:
A.T. said:
All body axes return to their initial orientations, so their relative rotation is zero. Of course Oy has traversed 2π, but Ox was fixed all the time.
Finally the axes x,y are in the same plane as they were before the moving. There are two coordinates frames (the initial frame and the final frame) rotated about z relative each other. The angle of this rotation is equal to the area in the sense of the previous post. Actually it has already been explained by etotheipi
 
Last edited:
  • Like
Likes vanhees71

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K