B What Happens When The Applied Force Equals the Static Friction Force?

AI Thread Summary
When the applied force exceeds the maximum static friction force, the object begins to move with constant acceleration. Initially, the applied force and static friction balance each other, preventing motion. Once the applied force surpasses static friction, the object accelerates until it reaches a constant velocity, where the applied force equals kinetic friction. The difference between static and kinetic friction determines the acceleration during this transition. Thus, the key point is that acceleration occurs only when the applied force exceeds static friction.
vibha_ganji
Messages
19
Reaction score
6
In my teacher’s notes, it said that when the applied force on an object equals the maximum static frictional force, the object begins to move at constant velocity. My question is if both the applied force and the frictional force cancel as they are equal in magnitude, what force accelerates the object from zero velocity to its constant velocity?
 
Physics news on Phys.org
Usually kinetic friction constant is smaller than static friction constant.
Applied force which equals the maximum static frictional force - the kinetic frictional source
would accelerate the body.
After it starts moving if applied force is lessened to equal the kinetic frictional force, it would move with constant speed.
 
  • Like
Likes Lnewqban and tech99
vibha_ganji said:
In my teacher’s notes, it said that when the applied force on an object equals the maximum static frictional force, the object begins to move at constant velocity. My question is if both the applied force and the frictional force cancel as they are equal in magnitude, what force accelerates the object from zero velocity to its constant velocity?
This doesn't sound right. It should be:

... when the applied force on an object exceeds the maximum static frictional force, the object begins to move with constant acceleration.

Note that static friction is usually greater than kinetic friction, so that you get a significant acceleration depending on how large this difference is. If the force is constant, then there is theoretically a minimum acceleration of ##\frac{f_s - f_k]{m}##, where ##f_k## is the kinetic friction, ##f_s## the static friction and ##m## the mass of the object. We assume that the applied force is approximately ##f_s## but just a tiny bit more.
 
  • Like
Likes Lnewqban and weirdoguy
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
I know that mass does not affect the acceleration in a simple pendulum undergoing SHM, but how does the mass on the spring that makes up the elastic pendulum affect its acceleration? Certainly, there must be a change due to the displacement from equilibrium caused by each differing mass? I am talking about finding the acceleration at a specific time on each trial with different masses and comparing them. How would they compare and why?
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top