This is a bit of a sidestep and a hypothetical one at that but has anyone read Rovellis ideas about statistical "thermal" time?
He reckons time is like temperature an average or statistical representation of heat, so far the maths works but that's about all that can be said for it.
"[url[/URL]
[QUOTE=]Cosmic time
It all sounds good on paper, but is there any evidence that the idea might be correct? Rovelli and Connes have tested their hypothesis with simple models. They started by looking at the cosmic microwave background (CMB) radiation that pervades the sky - relic heat from the big bang. The CMB is an example of a statistical state: averaging over the finer details, we can say that the radiation is practically uniform and has a temperature of just under 3 kelvin. Rovelli and Connes used this as a model for the statistical state of the universe, tossing in other information such as the radius of the observable universe, and looked to see what apparent time flow that would generate.
What they got was a sequence of states describing a small universe expanding in exactly the manner described by standard cosmological equations - matching what physicists refer to as cosmic time. "I was amazed," says Rovelli. "Connes was as well. He had independently thought about the same idea, and was very surprised to see it worked in a simple calculation."
To truly apply the thermal time hypothesis to the universe, however, physicists need a theory of quantum gravity. All the same, the fact that a simple model like that of the CMB produced realistic results is promising. "One of the traditional difficulties of quantum gravity was how to make sense of a theory in which the time variable had disappeared," Rovelli says. "Here we begin to see that a theory without a time variable can not only still make sense, but can in fact describe a world like the one we see around us."
What's more, the thermal time hypothesis gives another interesting result. If time is an artefact of our statistical description of the world, then a different description should lead to a different flow of time. There is a clear case in which this happens: in the presence of an event horizon.
[/QUOTE]
[QUOTE=]
It so happens that every event horizon has an associated temperature. The best known case is that of a black hole event horizon, whose temperature is that of the "Hawking radiation" it emits. Likewise, an accelerating observer measures a temperature associated with something known as Unruh radiation. The temperature Rovelli and Connes derived matches the Unruh temperature and the Hawking temperature for a black hole, further boosting their hypothesis.
"The thermal time hypothesis is a very beautiful idea," says Pierre Martinetti, a physicist at the University of Rome in Italy. "But I believe its implementation is still limited. For the moment one has just checked that this hypothesis was not contradictory when a notion of time was already available. But it has not been used in quantum gravity."
Others also urge caution in interpreting what it all means for the nature of time. "It is wrong to say that time is an illusion," says Rickles. "It is just reducible or non-fundamental, in the same way that consciousness emerges from brain activity but is not illusory."
So if time really does prove to be non-fundamental, what are we to make of it? "For us, time exists and flows," says Rovelli. "The point is that this nice flow becomes something much more complicated at the small scale."
At reality's deepest level, then, it remains unknown whether time will hold strong or melt away like a Salvador Dali clock. Perhaps, as Rovelli and others suggest, time is all a matter of perspective - not a feature of reality but a result of your missing information about reality. So if your brain hurts when you try to understand time, relax. If you really knew, time might simply disappear.[/QUOTE]