What is 4-Vector Potential Transformation under Gauge Fixing?

Kulkarni Sourabh
Messages
2
Reaction score
1
Homework Statement
4- vector potential transformation under Gauge fixing.
Relevant Equations
.
What is 4- vector potential transformation under Gauge fixing ?
Screenshot_2023_0220_150437.png
Screenshot_2023_0220_150520.png
 
Physics news on Phys.org
A gauge transform is a change in the 4-vector potential that leaves the ##E## and ##B## fields unchanged. So, for example, consider the 3-vector part of ##A##. Since the ##B## field is the curl of the 3-vector part of ##A##, then changing ##A## by adding a 3-vector with zero curl does not change ##B##.

Gauge fixing means to select particular conditions on ##A## to simplify the calculations you are currently doing. You do this by adding the corresponding things to ##A## such that the required condition is true. There are a number of commonly used gauge fixing conditions.

They are useful because we usually express the original version of the equations in a gauge-invariant (or covariant) form. That means we write all the equations in such a way that they are still true regardless of the gauge conditions we apply. That means if we were to do the calculation in another gauge we would necessarily get the same answer. Assuming, of course, we didn't make a mistake.
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top