What is a point of using complex numbers here?

Click For Summary
SUMMARY

The discussion centers on the application of complex numbers in the context of multiplying two complex numbers, specifically $$|(a + ib)(c + id)|^2$$. The participants demonstrate that the modulus property $$|zw|^2 = |z|^2|w|^2$$ simplifies the algebraic manipulation, leading to the conclusion that $$MN = p^2 + q^2$$. However, one participant questions the necessity of using complex numbers, suggesting that the algebra can be handled more straightforwardly without them. The consensus indicates that while complex numbers provide a valid approach, they may not offer a significant advantage in this particular exercise.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with algebraic manipulation involving real and imaginary parts
  • Knowledge of the modulus of complex numbers
  • Basic proficiency in mathematical proofs and equations
NEXT STEPS
  • Explore the properties of complex modulus in depth
  • Learn about the geometric interpretation of complex numbers
  • Study the applications of complex numbers in various mathematical fields
  • Investigate alternative methods for simplifying algebraic expressions without complex numbers
USEFUL FOR

Mathematicians, students studying complex analysis, educators teaching algebra, and anyone interested in the practical applications of complex numbers in mathematical proofs.

Hill
Messages
773
Reaction score
599
Homework Statement
"Here is a basic fact about integers that has many uses in number theory: If two integers can be expressed as the sum of two squares, then so can their product. With the understanding that each symbol denotes an integer, this says that if ##M = a^2 + b^2## and ##N = c^2 + d^2##, then ##MN = p^2 + q^2##. Prove this result by considering ##|(a + ib)(c + id)|^2##."
Relevant Equations
##|x+iy|^2 = x^2 + y^2##
Firstly, the exercise itself is not difficult:
On one hand, $$|(a + ib)(c + id)|^2 = |a + ib|^2|c + id|^2 = (a^2 + b^2) (c^2 + d^2) = MN.$$
On the other hand, ##(a + ib)(c + id) = p+ iq## for some integers p and q, and so $$|(a + ib)(c + id)|^2 = |p + iq|^2 = p^2 + q^2.$$
Thus, ##MN = p^2 + q^2.##

However, it can be done quite straightforwardly, without considering the complex numbers, e.g.,
$$MN = (a^2 + b^2) (c^2 + d^2) = a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 =$$$$a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 + 2abcd - 2abcd = $$$$(a^2 c^2 + 2abcd + b^2 d^2) + (a^2 d^2 - 2abcd + b^2 c^2) =$$$$(ac + bd)^2 + (ad - bc)^2 = p^2 + q^2.$$

I don't see an advantage of considering the complex numbers in this case. What am I missing?
 
Last edited:
  • Like
Likes   Reactions: berkeman
Physics news on Phys.org
You could prove this slightly more easily by using the properties of the complex modulus. The required algebra is already encapsulated in the equation ##|zw|^2 = |z|^2|w|^2##.
 
PeroK said:
You could prove this slightly more easily by using the properties of the complex modulus. The required algebra is already encapsulated in the equation ##|zw|^2 = |z|^2|w|^2##.
Thank you. I thought I've used it in this line:
$$|(a + ib)(c + id)|^2 = |a + ib|^2|c + id|^2 = (a^2 + b^2) (c^2 + d^2) = MN.$$
Is there something else there that I didn't use and that could simplify it further?
 
Hill said:
Thank you. I thought I've used it in this line:
$$|(a + ib)(c + id)|^2 = |a + ib|^2|c + id|^2 = (a^2 + b^2) (c^2 + d^2) = MN.$$
Is there something else there that I didn't use and that could simplify it further?
That looks simpler than the alternative to me.
 
  • Like
Likes   Reactions: Hill

Similar threads

Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K