What is a point of using complex numbers here?

Click For Summary

Homework Help Overview

The discussion revolves around the use of complex numbers in a mathematical exercise involving the multiplication of complex numbers and their modulus. Participants are examining the necessity and advantages of using complex numbers in the context of the problem.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to understand the benefits of using complex numbers in their solution, questioning whether there are advantages that they might be overlooking. Some participants suggest that properties of the complex modulus could simplify the proof.

Discussion Status

Participants are actively engaging with the problem, with some offering insights into the properties of complex numbers that may provide a more straightforward approach. There is a recognition of the algebraic relationships involved, but no consensus has been reached on the necessity of complex numbers in this context.

Contextual Notes

The original poster expresses confusion about the complexity of their approach compared to the potential simplicity offered by complex numbers, indicating a possible gap in understanding the application of these concepts.

Hill
Messages
791
Reaction score
614
Homework Statement
"Here is a basic fact about integers that has many uses in number theory: If two integers can be expressed as the sum of two squares, then so can their product. With the understanding that each symbol denotes an integer, this says that if ##M = a^2 + b^2## and ##N = c^2 + d^2##, then ##MN = p^2 + q^2##. Prove this result by considering ##|(a + ib)(c + id)|^2##."
Relevant Equations
##|x+iy|^2 = x^2 + y^2##
Firstly, the exercise itself is not difficult:
On one hand, $$|(a + ib)(c + id)|^2 = |a + ib|^2|c + id|^2 = (a^2 + b^2) (c^2 + d^2) = MN.$$
On the other hand, ##(a + ib)(c + id) = p+ iq## for some integers p and q, and so $$|(a + ib)(c + id)|^2 = |p + iq|^2 = p^2 + q^2.$$
Thus, ##MN = p^2 + q^2.##

However, it can be done quite straightforwardly, without considering the complex numbers, e.g.,
$$MN = (a^2 + b^2) (c^2 + d^2) = a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 =$$$$a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 + 2abcd - 2abcd = $$$$(a^2 c^2 + 2abcd + b^2 d^2) + (a^2 d^2 - 2abcd + b^2 c^2) =$$$$(ac + bd)^2 + (ad - bc)^2 = p^2 + q^2.$$

I don't see an advantage of considering the complex numbers in this case. What am I missing?
 
Last edited:
  • Like
Likes   Reactions: berkeman
Physics news on Phys.org
You could prove this slightly more easily by using the properties of the complex modulus. The required algebra is already encapsulated in the equation ##|zw|^2 = |z|^2|w|^2##.
 
PeroK said:
You could prove this slightly more easily by using the properties of the complex modulus. The required algebra is already encapsulated in the equation ##|zw|^2 = |z|^2|w|^2##.
Thank you. I thought I've used it in this line:
$$|(a + ib)(c + id)|^2 = |a + ib|^2|c + id|^2 = (a^2 + b^2) (c^2 + d^2) = MN.$$
Is there something else there that I didn't use and that could simplify it further?
 
Hill said:
Thank you. I thought I've used it in this line:
$$|(a + ib)(c + id)|^2 = |a + ib|^2|c + id|^2 = (a^2 + b^2) (c^2 + d^2) = MN.$$
Is there something else there that I didn't use and that could simplify it further?
That looks simpler than the alternative to me.
 
  • Like
Likes   Reactions: Hill

Similar threads

Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K