marcus
Science Advisor
Homework Helper
Gold Member
Dearly Missed
- 24,753
- 795
bapowell said:...When dealing with the universe, we consult general relativity, not special relativity. Look at Hubble's Law:
v = Hr (here v is the recession velocity of an object at a distance r, H is a constant).
From this expression (which is general relativistic, although approximate), we see that there is a point (r = c/H), at which distant objects are receding from us at greater than the speed of light. No contradiction here with SR: it's the space that is expanding -- all objects are at rest locally. And this is true for any expanding universe, not just inflation.
Powell I want to express support and appreciation. You've been giving Constantin the straight story about the standard cosmology model.
I'll add some detail (I hope it doesn't make things confusing to have extra detail. So far you and Dave have managed to be very clear.)
Constantin, you should understand what distance measure is used in the Hubble law
v = Hd.
A good way to think about it is to imagine freezing expansion right before you measure. So the distance doesn't change while you are measuring it.
You freeze at a certain moment, and measure by timing a light pulse or radio blip.* And then unfreeze so things are back to normal again.
Maybe we could call it "freeze-frame radar ranging".
The Hubble law applies to large distances like those separating independent clusters of galaxies and it says that a distance d, imagine it measured the way I described, expands at rate v = Hd.
The Hubble ratio H(t) changes over time, so I should specify a present moment t when we make the measurements and say v = H(t)d, but that too is a technicality. The standard cosmo model gives us past values of H as well as the present value.
Check this out:
http://www.uni.edu/morgans/ajjar/Cosmology/cosmos.html
To use it, put in .27 for matter density and .73 for cosmo constant, and 71 for present value of H(t). Then you can put in any redshift z and it will tell you the present (freeze) distance and the past (freeze) distance when the light was emitted and started traveling towards us. And it will tell the past value of H(t) when the light started its journey. And it will tell the distance expansion rates.
Personally I avoid saying "space itself expands". I say distances expand. I think of geometry as dynamic and geometry is about distances, angles, areas etc. I don't say "space" expands because I don't like to give the impression that it is a substance like rubber or bread-dough. I focus on geometry that rides on the material metaphor. But at this point, for Constantin and Powell and the rest of us, that technical distinction is not important. The main thing is picture Hubble law and picture the relevant distances.
Constantin, how about trying that calculator and getting distances for, say z = 1.4 and z = 1.7, and z = 1090. z=1090 is pretty close to the edge of the observable universe. The microwave background (CMB) comes in with redshift 1090 and it comes from the most distant matter we can see. Let us know if you have any trouble.
I keep the link to that calculator in my sig, to have it convenient, since it is very useful.
-----------------------------------footnote-----------------------------------------
*technically the CMB (the background of ancient light) helps in defining the moment when you freeze expansion.
Last edited: