Originally posted by jeff
Let's just forget about the insult, sorry. Now, I'm not sure how I've done this, but I seem to have left you with the impression that I don't understand mass-energy equivalence. Of course I do and agree with the gist of your remarks relating directly to it. What I don't understand is your view of energy as being somehow less real than mass and how you reconcile that view with your correct statements about mass-energy equivalence.
Keep in mind, that mass-energy equivalence is implicit in my very general remarks about the stress-energy tensor of relativity and it's role in defining what energy is.
Well you have to keep in mind that I'm writing a paper on this subject at this same time and in doing so I have to be very precise about it in that paper. Feynman's description is beautiful and also quite logical and that's strongly affected my view. In the process I spend almost every second of my time yesterday on one thing - "What is energy?"
I didn't think you didn't understand mass-energy equivalence. I was just explaining what I meant by it being "real/nonread" It's a poor choice of words at best since It leads people to think that what the energy corresponds to is not real. And the word really should be used in physics
Let be go back to what I was explaining regarding what I meant. Consider a spring and a harmonic Oscilator - E.G. a particle by to a spring. Then the force on the particle is F = -kx. it follows that the quantity
(1/2)m v^2 + (1/2) k x^2
is constant during the motion. Potential + Kinetic = Constant
So here is what I meant buy the book keeping. I'm given E. I go home to take a nap. Later I call the lab and ask what x is. Somoene tells me. I then compute the potential energy. I then calculate the kinetic energy. I then subtract that from the total energy. I now have the kinetic energy. From that I calculate the speed. So I know know v.
v and x are measureable. I can do experiments to measure both the position and velocity. Energy links them together. But in doing all of this the quantity E is an abstract notion. I can't do an experiment to measure E. What I do is measure the "real" physical quantitites "x" and "u". There's no microscope that can be built to measure E. It's just not that way. Same idea holds for E = mc^2.
In that sense energy is not real. And it's in that sense that I think mass is abstract and mass real - but then again this get's into epistimolology doesn't it?
As far as defininig energy as that which "couples" to gravity. I don't know what you mean by that term. I interpret your comment to mean that which curves spacetime or somthing like that.
One of the main reasons I don't like what youv'e defined is that it doesn't ttell me what energy is. E.g. Since you can transform gravity away it has a relative existence. What does that say of energy?
Recall how Feynman summarizes his comments about energy
It is important to realize that in physics today, we have no knowledge of what energy is. We do not have a picture that energy comes in little blobs of a definite amount. It is not that way. However there are formulas for calculating some numerical quantity, and when we add it all together it gives us "28" - always the same number. It is an abstract thing in that it does not tell us the mechanism or reason for the various formulas.
And of course that number is whatever you want it to be. Only changes correspond to something which is measureable.
When it came to particles with non-zero rest mass then I believe that Einstein referred to the E as the energy of the rest mass, i.e. E = m_o*c^2 = 'rest energ.' Let me quote what Einstein said when it came to rest energy - From "Elementary derivation of the Equivalence of Mass and Energy," Bulletin of the American Mathematical Monthly, 41, 223-230 (1935)
Furthermore, it is not perfectly clear as to what is meant in speaking of rest energy, as energy is defined only to within a additive constant; ...
Pete