MHB What is Stoll's definition of the natural logarithm function?

Click For Summary
Stoll's definition of the natural logarithm function involves using the Chain Rule and the Fundamental Theorem of Calculus (FTC) to establish the derivative of the logarithm. There is confusion regarding the application of the FTC, particularly with the variable limits of integration, as the upper limit in the integral does not align with the transformed variable. Clarification suggests that the variables in the FTC and the transformed variable are distinct, allowing for the interpretation of the logarithm's derivative correctly. Some participants argue that the definition is convoluted and propose a more straightforward approach using the natural exponential function. The discussion highlights the complexities and nuances in defining the natural logarithm, especially when extending to complex numbers.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Manfred Stoll's book: Introduction to Real Analysis.

I need help with Stoll's definition of the natural logarithm function (page 234 -235)

The relevant section of Stoll reads as follows:

View attachment 3975
In this section we read:

" ... ... To prove (a), consider the function $$L(ax), x \gt 0$$. By the Chain Rule (Theorem 5.1.6)

$$\frac{d}{dx} L(ax) = \frac{1}{ax} a = \frac{1}{x} = L'(x) $$

... ... "I am somewhat puzzled by the above text ... I hope someone can clarify it for me ...

I will try to make my problem clear ... as follows ... ...

In the above text that I have quoted, the Chain Rule and the Fundamental Theorem of the Calculus (FTC) are used ...

... BUT ... the FTC asserts that if:

$$F(x) = \int_a^x f$$(t) dt

then

$$F'(c) = f(c)$$ where $$c$$ belongs to an interval $$[a,b] $$... BUT ... in the text on the natural logarithm function, Stoll seems (confusingly in my opinion!) that

$$F'(ax) = f(ax)$$ ... ... !?

... BUT ... $$x$$ is the upper limit of the integral ...

How then are we to interpret this use of FTC? ... ... indeed, if $$a \gt 1$$, then $$ax \gt x$$ where $$x$$ is the upper limit of the integral $$\int_a^x f(t) dt$$ ... ...

I thus find the above puzzling and confusing ...

Can someone please clarify the above issue for me ... ...

Peter***EDIT***

Since my post above refers to Stoll's statement of the Fundamental Theorem of the Calculus, I am providing Stoll's statement of the relevant version of the Fundamental Theorem of the Calculus as follows:View attachment 3976
View attachment 3977
 
Last edited:
Physics news on Phys.org
Hi Peter,

If I am understanding your question correctly, you are confused as to why we are able to apply FTC when $ax$ is not in the interval $(a,x)$ in $\displaystyle \int_1^x f(t) \,dt$? You can view the $x$ in the FTC and the $x$ in $ax$ are different $x$'s. In the case of the $ax$, we are to interpret that $ax\in(0,\infty)$. I think, more clearly, we can say $L(s)=\int_{1}^{s} f(t) \,dt$, and so let $s=ax \in(0,\infty)$, then $L'(ax)=\frac{1}{x}$.

So indeed, it follows from the definition where $c=ax$ and $c$ belongs in the interval $[a,b]$. Again, this $a$ is different from the above $a$.
 
Last edited:
While entirely correct, this definition of the natural logarithm seems extremely convoluted. It is much more concise to define the natural exponential function $\displaystyle \begin{align*} y = \mathrm{e}^x \end{align*}$ as being the exponential function which is equal to its own derivative. Since this function is one-to-one, its inverse is a function, which is defined as the natural logarithm.
 
Prove It said:
While entirely correct, this definition of the natural logarithm seems extremely convoluted. It is much more concise to define the natural exponential function $\displaystyle \begin{align*} y = \mathrm{e}^x \end{align*}$ as being the exponential function which is equal to its own derivative. Since this function is one-to-one, its inverse is a function, which is defined as the natural logarithm.
It's the book (what analysis text uses x as both bound and free variable? I mean, really?).

The definition he gave is actually nice. This is the proof he should have presented:

Consider $ \displaystyle \int_1^{ab}\frac{1}{t}\;{dt} = \int_1^a\frac{1}{t}\;{dt}+\int_a^{ab}\frac{1}{t}\;{dt}. $ Let $t = au$ for the last integral

We have $ \displaystyle \int_a^{ab}\frac{1}{t}\;{dt} = \int_1^{b} \frac{1}{u}\;{du}$, therefore $\displaystyle \int_1^{ab}\frac{1}{t}\;{dt}=\int_1^a\frac{1}{t}\;{dt}+\int_1^b\frac{1}{t}\;{dt}.$
 
The definition of 'natural logarithm' through a definite integral has, in my opinion, criticalities when the variable is a complex number ...

$\displaystyle \ln z = \int_{1}^{z} \frac{d s}{s}\ (1)$
i283726789510351570._szw380h285_.jpg.jfif
Let suppose we want to calculate $\displaystyle \ln z$ with z=-1 using (1)... referring to the figure we see that starting from z = 1 we arrive at z = -1 along two different paths, the top or bottom half circle ... in the first case we have...

$\displaystyle \ln -1 = i\ \int_{0}^{\pi} e^{- i\ \theta}\ e^{i\ \theta}\ d \theta = i\ \int_{0}^{\pi} d \theta = \pi\ i\ (2)$

... and in the second case we have...

$\displaystyle \ln -1 = i\ \int_{0}^{- \pi} e^{- i\ \theta}\ e^{i\ \theta}\ d \theta = i\ \int_{0}^{- \pi} d \theta = - \pi\ i\ (3)$

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K