MHB What is the Absolute Maximum Value of f in the Function f(x) = ln(x)/x?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Absolute Max
Click For Summary
The function f(x) = ln(x)/x has an absolute maximum value at f(e) = 1/e, confirmed through both graphical analysis and calculus. The first derivative test indicates that f(x) is increasing on the interval (0, e) and decreasing on (e, ∞), establishing e as the critical point. The second derivative test further verifies that f(e) is a maximum since f''(e) is negative. Additionally, limits as x approaches infinity or zero confirm that this is the only critical point, reinforcing that 1/e is indeed the absolute maximum. Overall, the analysis concludes that the absolute maximum value of f is 1/e.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\text{22. Let f be the function defined by $f(x)=\dfrac{\ln x}{x}$ What is the absolute maximum value of f ? }$
$$(A)\, 1\quad (B)\, \dfrac{1}{e} (C)\, 0 \quad (D) -e \quad (E)
f\textit{ does not have an absolute maximum value}.$$

I only guessed this by graphing it and it appears to $\dfrac{1}{e}$ which is (B)
 
Physics news on Phys.org
karush said:
$\text{22. Let f be the function defined by $f(x)=\dfrac{\ln x}{x}$ What is the absolute maximum value of f ? }$
$$(A)\, 1\quad (B)\, \dfrac{1}{e} (C)\, 0 \quad (D) -e \quad (E)
f\textit{ does not have an absolute maximum value}.$$

I only guessed this by graphing it and it appears to $\dfrac{1}{e}$ which is (B)
Why would graphing be a guess? It's a valid Mathematical tool!

You could do this by taking the derivative of f(x) and finding the critical points, etc. But if you have this question on an exam the simplest (and probably fastest) way is to take a look at each answer and see what you get. D) is out because f(x) takes on positive values, and A), C), and E) are out by looking at the graph. That leaves B).

-Dan
 
$f’(x)=\dfrac{x \cdot \frac{1}{x} - \ln{x} \cdot 1}{x^2} = \dfrac{1-\ln{x}}{x^2}$

$f’(x)=0$ at $x=e$

first derivative test ...

$x < e \implies f’(x) > 0 \implies f(x) \text{ increasing over the interval } (0,e)$

$x > e \implies f’(x) < 0 \implies f(x) \text{ decreasing over the interval } (e, \infty)$

conclusion ... $f(e) = \dfrac{1}{e}$ is an absolute maximum.

second derivative test ...

$f’’(x) = \dfrac{x^2 \cdot \left(-\frac{1}{x} \right) - (1-\ln{x}) \cdot 2x}{x^4} = \dfrac{2\ln{x} - 3}{x^3}$

$f’’(e) = -\dfrac{1}{e^3} < 0 \implies f(e) = \dfrac{1}{e}$ is a maximum.
 
wow that was a lot of help..

yes the real negative about these assessment tests is how fast you can eliminate possible answers
not so much what math steps are you really need to take

actually I am learning a lot here at MHB
Mahalo
 
The first or second derivative tests show that this is a maximum but do not show that it is an absolute maximum. We do that by observing that this is the only critical point and that the limits, as x goes to infinity or negative infinity are 0.
 

Attachments

  • MeWe.PNG
    MeWe.PNG
    730 bytes · Views: 129
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K