What is the Angle Between Vectors Method?

t_n_p
Messages
593
Reaction score
0

Homework Statement



A little left of field this question..

http://img455.imageshack.us/img455/4531/bantuzfy5.jpg

The Attempt at a Solution



I'm unsure more with the wording of this question if anything rather than the method of how to go about it. How would I go about finding the vector that represents a "half Inuit, half Bantu" population?
 
Last edited by a moderator:
Physics news on Phys.org
Take the average of the two columns.
 
Seems pretty logical/right, but best to wait for another person to confirm this is 100% right.

Thanks christianjb!
 
Personally I would go for the geometric mean of the 2 columns, rather than arithmetic mean (assuming the numbers represent probabilities?), but It could still be correct to say arithmetic mean.
 
Since they are talking about these as vectors, I would interpret "half Inuit, half Bantu" to mean (1/2)\vec{I}+ (1/2)\vec{B}, adding 1/2 of each vector. of course, that is the same as taking the arithmetic average (mean).
 
I guess it's the average of two then. Thanks guys
 
Managed to figure that one out after using the mean of the two but got stuck soon after on this question.

Amongst all possible combinations that are mix of Inuit and Bantu, find the mix
that is closest to the English population. (Hint: Set up things such that the
infinitely many different possible mixed populations correspond to a vector that depends on a variable, say t.)

With the hint, I'm thinking I should use Gaussian elimination somehow? Is there a better method?
 
Halls, I can't see your Latex graphic!
 
I would interpret a "mix" of Inuit and Bantu vectors as t\vec{I}+ (1-t)\vec{B} where t is a number between 0 and 1. That will give the "infinitely many different possible mixed populations" they are talking about. Find the t that minimizes the distance between that and \vec{E}.
 
  • #10
hmmm, not sure how I would go about finding a t value that minimizes distance...
 
  • #11
bump*********
 
  • #12
Do you know how to find the distance between two vectors: ||u- v||.
That will be quadratic in t and then complete the square.
 
  • #13
HallsofIvy said:
Do you know how to find the distance between two vectors: ||u- v||.
That will be quadratic in t and then complete the square.

I don't really understand, can you elaborate?
 
  • #14
Last edited:
  • #15
woah!
So first I find the distance between the two vectors, but which two vectors in particular? My common sense tells me between vector E and vector (tI - (1-t)B. But how do I interpret (tI - (1-t)B?

Slightly confused! :confused:
 
  • #16
I'm not sure calculating the magnitude of the difference between the vectors will give the right solution... it is the angle that needs to be minimized...

calculate:
H = tI + (1-t)B

t is just a scalar, write out I and B in (x1,x2,x3,x4) form... then you should be able to calculate H and write it in (x1,x2,x3,x4) form.

Then do the dot product between E (english) and H... you have a formula for dot product that relates it to the magnitudes and the angle between the vectors...
 
  • #17
t_n_p said:
woah!
So first I find the distance between the two vectors, but which two vectors in particular? My common sense tells me between vector E and vector (tI - (1-t)B.
Correct.
But how do I interpret (tI - (1-t)B?

Slightly confused! :confused:
Weighted average of I and B (weight = t). A.k.a. convex linear combination of I and B.
 
Last edited:
  • #18
learningphysics said:
I'm not sure calculating the magnitude of the difference between the vectors will give the right solution... it is the angle that needs to be minimized...

calculate:
H = tI + (1-t)B

t is just a scalar, write out I and B in (x1,x2,x3,x4) form... then you should be able to calculate H and write it in (x1,x2,x3,x4) form.

Then do the dot product between E (english) and H... you have a formula for dot product that relates it to the magnitudes and the angle between the vectors...
I am thinking... "If there is any justice in the world" then the two should give the same solution. Why would they be different?
 
  • #19
EnumaElish said:
I am thinking... "If there is any justice in the world" then the two should give the same solution. Why would they be different?

Because the vectors don't have the same magnitude...

If we're using 2d vectors for example... you can construct two vectors at a fixed angle, and arbitrarily change the length of one of the vectors keeping the other fixed... the third side (representing the difference in the two vectors) will increase in magnitude, but the angle is fixed...

If you restrict the two sides being the same length then it doesn't matter... but in this case the magnitudes are different.
 
  • #20
Okay, I am convinced. Why do you think angle is the right approach, not distance? Why should magnitude not matter?
 
  • #21
EnumaElish said:
Okay, I am convinced. Why do you think angle is the right approach, not distance? Why should magnitude not matter?

The intial question mentions the genetic distance \theta as the angle between the two vectors... So I was just going with that...
 
  • #22
learningphysics said:
I'm not sure calculating the magnitude of the difference between the vectors will give the right solution... it is the angle that needs to be minimized...

calculate:
H = tI + (1-t)B

t is just a scalar, write out I and B in (x1,x2,x3,x4) form... then you should be able to calculate H and write it in (x1,x2,x3,x4) form.

Then do the dot product between E (english) and H... you have a formula for dot product that relates it to the magnitudes and the angle between the vectors...

Ok I've just got a small question.
After plugging in I and B in the form (x1,x2,x3,x4), I get this result..

http://img67.imageshack.us/img67/5144/untitledgg9.jpg

What do I do next? I can't just expand out because those are commas, not +, - etc...:confused:
 
Last edited by a moderator:
  • #23
t_n_p said:
Ok I've just got a small question.
After plugging in I and B in the form (x1,x2,x3,x4), I get this result..

http://img67.imageshack.us/img67/5144/untitledgg9.jpg

What do I do next? I can't just expand out because those are commas, not +, - etc...:confused:

t and 1-t are just scalars... it's just multiplication of a vector by a scalar... eg 2(1,1,1,1) = (2,2,2,2)

Hope that you've learned about vectors and dot product etc... because this problem involves that.
 
Last edited by a moderator:
  • #24
Yeah, just had a small mind block!
would the second section become (0.1-0.1t, 0.08-0.08t, etc) ?
 
  • #25
t_n_p said:
Yeah, just had a small mind block!
would the second section become (0.1-0.1t, 0.08-0.08t, etc) ?

Yup, that's right.
 
  • #26
Ok, now I've done that.
H = (0.29t, 0t, 0.03t, 0.67t) + (0.1-0.1t, 0.08-0.08t, 0.12-0.12t, 0.69-0.69t)

How do I dot product E with H now that H is in this (slightly weird) form?
 
  • #27
t_n_p said:
Ok, now I've done that.
H = (0.29t, 0t, 0.03t, 0.67t) + (0.1-0.1t, 0.08-0.08t, 0.12-0.12t, 0.69-0.69t)

How do I dot product E with H now that H is in this (slightly weird) form?

Add up those two parts of H...
 
  • #28
ah, so H = (0.29t+0.1-0.1t, 0t+0.08-0.08t, etc...)
 
  • #29
Yup. Now try to use the dot product with E now... it's going to get a little tricky... you also have a formula that relates dot products with angles... that's what you need here.

The idea is to minimize the angle with E.
 
  • #30
Ok, after cleaning up the dot product I get..

E·H = 0.0146t + 0.4874

Now I apply the formula

http://img385.imageshack.us/img385/308/untitledjq2.jpg

But how exactly do I minimize the angle?
 
Last edited by a moderator:

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
14
Views
871
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
14
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K