MHB What Is the Annihilator of a Quotient Ring?

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    quotient Ring
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

I think I need to refresh my memory about annihilators and quotient rings. Hope you can help me with the following example.

I want to find the annihilator of $a'$ and $b'$ of the quotient ring $R=\mathbb{Z}/(a'b')$ where $a',\,b'>1$. So if I go by the definition, $ann(a')=\{r\in \mathbb{R}\mid a'r=0\}=\{a' \mathbb{Z}+b' \mathbb{Z}+(a'\,b')\in \mathbb{R}\mid a'(a' \mathbb{Z}+b'\mathbb{Z})=0\}$Am I correct unto this point?
 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

I think I need to refresh my memory about annihilators and quotient rings. Hope you can help me with the following example.

I want to find the annihilator of $a'$ and $b'$ of the quotient ring $R=\mathbb{Z}/(a'b')$ where $a',\,b'>1$. So if I go by the definition, $ann(a')=\{r\in \mathbb{R}\mid a'r=0\}=\{a' \mathbb{Z}+b' \mathbb{Z}+(a'\,b')\in \mathbb{R}\mid a'(a' \mathbb{Z}+b'\mathbb{Z})=0\}$Am I correct unto this point?

Hi everyone, :)

Since I was in a hurry to find the answer to this question I posted this on StackExchange and I got an answer to this there.

>>Link to Thread<<
 
Your first post is rather jumbled, and the notation is weird.

Suppose $R = \Bbb Z/(ab)$. I think by:

$a'$ you must mean $a' = a + (ab) \in \Bbb Z/(ab)$.

If we want to know what:

$\text{ann}(a') = \{k + (ab) \in \Bbb Z/(ab): (k + (ab))(a + (ab)) = 0 + (ab)\}$

is, this is the same thing as asking:

For what $k \in \Bbb Z$ do we have:

$ka \equiv 0\text{ (mod }ab)$?

The first thing to notice about this, is that if gcd(k,ab) = 1, this will never happen.

On the other hand, it is obvious that if $k \equiv tb\text{ (mod }ab)$ it will ALWAYS happen.

Now, if:

$(k + (ab))(a + (ab)) = ka + (ab) = (ab)$

it is necessarily the case that $ka \in (ab)$. This means that:

$ka = tab$ for some integer $t$. The integers are cancellative, so we can deduce from this that:

$k = tb$, which is the same thing as saying $k \in (b)$.

Thus $k' \in \text{ann}(a') \iff k \in (b)$, that is:

$\text{ann}(a') = (b') =$ the ideal generated by $b + (ab)$ in the quotient.

Let's look at a specific example, to see how this actually goes down:

Let $a = 4, b = 6$, and we shall work mod 24. As we saw above, we need not consider the congruence class (cosets) of:

1,5,7,11,13,17,19,23 which only leaves 16 cosets to check.

It is immediate that 0,6,12,18 all annihilate 4 (or rather the coset of 4), so we need only show that:

2,3,4,8,9,10,14,15,16,20,21,22 do NOT annihilate 4. This can be done explicitly:

2*4 = 8
3*4 = 12
8*4 = 8
9*4 = 12
10*4 = 16
14*4 = 8
15*4 = 12
16*4 = 16
20*4 = 8
21*4 = 12
22*4 = 16

so it is indeed the case that 6 generates the annihilator.
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
727
  • · Replies 5 ·
Replies
5
Views
789
Replies
21
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K