- #1
HelloCthulhu
- 151
- 3
- Homework Statement
- A copper parallel plate capacitor has an area of 0.049m. A 1mm thick low-density polyethylene (LDPE) film is placed in between two 3.5mm thick BaTiO3 plates and placed inside the parallel plate capacitor. Both dielectrics have an area of 0.049m. Find the maximum capacitance, voltage and charge for the capacitor. If this two dielectric capacitor were to exceed its maximum voltage, which dielectric will breakdown first?
- Relevant Equations
- Q=CV
V = Ed
electric constant = $ \epsilon_{0}=8.854\times 10^{-12}$
Capacitance:
$$C=K\epsilon_{0}\frac{A}{d}$$
Capacitance for 2 capacitors in series:
$$C_{T}=\frac{C_{1}\times C_{2}}{C_{1}+C_{2}}$$
Breakdown voltage the capacitor:
$$ V_{max}=\frac{V_{bd}}{\frac{C_{T}}{C_{1}}}$$
BaTiO3
thickness = 7mm = 0.007m
dielectric constant = K = 1260
dielectric breakdown = E = 97MV/m (97kv/mm)
(Structural, Dielectric and Ferroelectric Properties of Tungsten Substituted Barium Titanate Ceramics, 2009)
LDPE
thickness = d = 0.007m
dielectric constant = K = 2.3
dielectric breakdown = 3kV/m (300V/mm)
https://www.azom.com/article.aspx?ArticleID=428
In a two dielectric capacitor, if one dielectric breaks down the capacitor fails. To solve for the voltage across each capacitor in series, first find the capacitance:
Max voltage for BaTiO3:
(97e6 MV)× 0.007m = 679000 = 680kV
Capacitance:
$$C=\frac{(8.85\times 10^{-12})\times1200\times0.049}{0.007}=0.00000007434F=7.434\times10^{-10} F=74340pF$$
Charge for BaTiO3:
(680e3V)*(0.00000007434e-10F) = 5.05512e-12C = 5.05512e-6μC
Max voltage for Low Density Polyethylene - LDPE:
(27e6V)×0.001m = 27000V = 27kV
Capacitance for LDPE:
$$ C=\frac{(8.85\times 10^{-12})\times2.3\times0.049}{0.007}=0.000000000997395F=9.97395\times10^{-10}F=997.395 pF$$
Charge for LDPE:
(27e3V)×( 9.97395e-10F) = 2.6929665e-5C = 26.929665μC
Total capacitance:
$$C_{T}=\frac{(7.434\times10^{-10})\times(9.97395\times10^{-10})}{(7.434\times10^{-10})+(9.97395\times10^{-10})}=9.84190445\times10^{-11}F=984.190445pF$$
BaTiO3:
$$V_{max}=\frac{680\times10^{3}}{\frac{984.190445pF}{74,340pF}}=\frac{680\times10^{3}}{0.0132390428436911}=51363229.8V=51MV$$
LDPE:
$$V_{max}=\frac{460\times10^{3}V}{\frac{984.190445pF}{997.395 pF}}=\frac{460\times10^{3}V}{0.986760957293750}=466171.6491V=466kV$$
thickness = 7mm = 0.007m
dielectric constant = K = 1260
dielectric breakdown = E = 97MV/m (97kv/mm)
(Structural, Dielectric and Ferroelectric Properties of Tungsten Substituted Barium Titanate Ceramics, 2009)
LDPE
thickness = d = 0.007m
dielectric constant = K = 2.3
dielectric breakdown = 3kV/m (300V/mm)
https://www.azom.com/article.aspx?ArticleID=428
In a two dielectric capacitor, if one dielectric breaks down the capacitor fails. To solve for the voltage across each capacitor in series, first find the capacitance:
Max voltage for BaTiO3:
(97e6 MV)× 0.007m = 679000 = 680kV
Capacitance:
$$C=\frac{(8.85\times 10^{-12})\times1200\times0.049}{0.007}=0.00000007434F=7.434\times10^{-10} F=74340pF$$
Charge for BaTiO3:
(680e3V)*(0.00000007434e-10F) = 5.05512e-12C = 5.05512e-6μC
Max voltage for Low Density Polyethylene - LDPE:
(27e6V)×0.001m = 27000V = 27kV
Capacitance for LDPE:
$$ C=\frac{(8.85\times 10^{-12})\times2.3\times0.049}{0.007}=0.000000000997395F=9.97395\times10^{-10}F=997.395 pF$$
Charge for LDPE:
(27e3V)×( 9.97395e-10F) = 2.6929665e-5C = 26.929665μC
Total capacitance:
$$C_{T}=\frac{(7.434\times10^{-10})\times(9.97395\times10^{-10})}{(7.434\times10^{-10})+(9.97395\times10^{-10})}=9.84190445\times10^{-11}F=984.190445pF$$
BaTiO3:
$$V_{max}=\frac{680\times10^{3}}{\frac{984.190445pF}{74,340pF}}=\frac{680\times10^{3}}{0.0132390428436911}=51363229.8V=51MV$$
LDPE:
$$V_{max}=\frac{460\times10^{3}V}{\frac{984.190445pF}{997.395 pF}}=\frac{460\times10^{3}V}{0.986760957293750}=466171.6491V=466kV$$
Last edited by a moderator: