MHB What is the connection between roots of f and g using Rolle's Theorem?

  • Thread starter Thread starter Tomp
  • Start date Start date
  • Tags Tags
    Theorem
Tomp
Messages
27
Reaction score
0
[h=1][/h]I'm doing a question and I am getting stuck and need help

Question:
Consider the continuous functions f(x) = 1 - e^(x)*sin(x) and g(x) = 1 + e^(x)*cos(x). Using Rolle's Theorem, prove that between any two roots of f there exists at least one root of g.

Hint
Remember that, a root of f is a point x in the domain of f such that f(x) = 0.

Can someone provide a natural language proof of this?
 
Physics news on Phys.org
Let a and b be two successive roots of f. Observe that by Rolle's theorem, we must have some c in (a,b) such that f'(c)=0. This means we must have:

$\displaystyle -e^c\cos(c)-e^c\sin(c)=0$

$\displaystyle -e^c\sin(c)=e^c\cos(c)$

$\displaystyle 1-e^c\sin(c)=1+e^c\cos(c)$

$\displaystyle f(c)=g(c)$

So, we find that f and g meet at the turning points of f. This means g must have at least one root between two successive turning points of f.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top