What is the definition of proper time interval according to Wikipedia?

Click For Summary
SUMMARY

The proper time interval, denoted as ##\Delta \tau##, is defined by the integral ##\Delta \tau=\int_P d \tau=\int \frac{d s}{c}##, where ##P## represents the worldline of a clock moving along a timelike path. This worldline is not strictly the time axis of the rest frame but is parallel to it. Proper time remains invariant across different reference frames, allowing calculations in both rest and moving frames to yield the same proper time value. The formula for proper time is applicable to any timelike worldline, regardless of the clock's state of motion.

PREREQUISITES
  • Understanding of proper time and spacetime concepts
  • Familiarity with integral calculus in physics
  • Knowledge of timelike worldlines in relativity
  • Basic grasp of reference frames and invariance in physics
NEXT STEPS
  • Study the concept of timelike worldlines in special relativity
  • Learn about the invariance of proper time across different reference frames
  • Explore the mathematical derivation of proper time using integrals
  • Investigate Fermi-Walker transport and its application in relativity
USEFUL FOR

Students and professionals in physics, particularly those focused on relativity, spacetime concepts, and the mathematical foundations of proper time measurement.

Kashmir
Messages
466
Reaction score
74
Wikipedia article on proper time

"Given this differential expression for ##\tau##, the proper time interval is defined as
##
\Delta \tau=\int_P d \tau=\int \frac{d s}{c} .
##
Here ##P## is the worldline from some initial event to some final event with the ordering of the events fixed by the requirement that the final event occurs later according to the clock than the initial event."

In the integral
##
\Delta \tau=\int_P d \tau=\int \frac{d s}{c} ## , is the worldline a line on the time axis of the frame in which the clock is at rest? Also I can calculate the integral in another frame in which the clock is moving, however the world line will have spacetime coordinates different than the rest frame ,however due to invariance of ##ds## we get the same value of proper time as we have in the rest frame. Am I correct?
 
Physics news on Phys.org
Kashmir said:
is the worldline a line on the time axis of the frame in which the clock is at rest?
No, it's any timelike line. In general you would write $$\begin{eqnarray*}
ds&=&\sqrt{c^2dt^2-dx^2}\\
&=&\sqrt{c^2-\left(\frac{dx}{dt}\right)^2}dt
&=&\sqrt{c^2-v^2(t)}dt
\end{eqnarray*}$$where ##v(t)## is the velocity of the worldline in whatever coordinates you're using.
Kashmir said:
Also I can calculate the integral in another frame in which the clock is moving, however the world line will have spacetime coordinates different than the rest frame ,however due to invariance of we get the same value of proper time as we have in the rest frame.
Yes.
 
  • Like
Likes   Reactions: Dale, vanhees71 and topsquark
Ibix said:
No, it's any timelike line. In general you would write $$\begin{eqnarray*}
ds&=&\sqrt{c^2dt^2-dx^2}\\
&=&\sqrt{c^2-\left(\frac{dx}{dt}\right)^2}dt
&=&\sqrt{c^2-v^2(t)}dt
\end{eqnarray*}$$where ##v(t)## is the velocity of the worldline in whatever coordinates you're using.
It is not any timelike line in the rest frame, but it is also not necessarily the time axis. It is a line parallel to the time axis.
 
  • Like
Likes   Reactions: topsquark
Kashmir said:
is the worldline a line on the time axis of the frame in which the clock is at rest?
##P## is the worldline of any clock in any state of motion in any reference frame in any spacetime.

Kashmir said:
Also I can calculate the integral in another frame in which the clock is moving, however the world line will have spacetime coordinates different than the rest frame ,however due to invariance of ds we get the same value of proper time as we have in the rest frame.
Yes. You can change the reference frame as you like, including non-inertial frames, the value will not change.
 
  • Like
Likes   Reactions: topsquark and vanhees71
Orodruin said:
It is not any timelike line in the rest frame, but it is also not necessarily the time axis. It is a line parallel to the time axis.
The formula above is not required to be evaluated in the clock’s rest frame
 
  • Like
Likes   Reactions: topsquark and vanhees71
Dale said:
The formula above is not required to be evaluated in the clock’s rest frame
No, but it is what the OP asked about:
Kashmir said:
is the worldline a line on the time axis of the frame in which the clock is at rest?
 
  • Like
Likes   Reactions: topsquark and vanhees71
Orodruin said:
It is not any timelike line in the rest frame
Ah yes, sorry. @Kashmir - the formula you quoted is completely general and works for any ##P##, whether the clock on that worldline is at rest/moving/accelerating/whatever. However, if the clock is inertial and in its rest frame then the worldline ##P## is parallel to the time axis, although it need not be the axis itself.
 
  • Like
Likes   Reactions: topsquark
Orodruin said:
No, but it is what the OP asked about:
Yes, they were asking if P were a worldline on the time axis. That formula is valid for any timelike worldlines, not just ones on the time axis or parallel to it
 
  • Like
Likes   Reactions: vanhees71
Dale said:
Yes, they were asking if P were a worldline on the time axis.
Not quite - the original post says (my emphasis)
Kashmir said:
In the integral
##
\Delta \tau=\int_P d \tau=\int \frac{d s}{c} ## , is the worldline a line on the time axis of the frame in which the clock is at rest?
...to which the answer is no, but it's a line parallel to the axis, at least if we understand that ##P## is the worldline of the clock.
 
  • Like
Likes   Reactions: topsquark and vanhees71
  • #10
Given a time-like line you can always construct local rest frames by Fermi-Walker transporting a tetrade along this world line.

Proper time is the time measured by a clock moving along an arbitrary time-like world line, and of course you don't need to construct the local rest frames to calculate it since it's an invariant/scalar. It's always given by
$$\mathrm{d} \tau =\sqrt{g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}} \mathrm{d} \lambda/c,$$
where ##\lambda## is an arbitrary parameter for the time-like world line (I use the +--- signature for the pseudo-metric).
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
5K
  • · Replies 6 ·
Replies
6
Views
823
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
6K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
1K
  • · Replies 62 ·
3
Replies
62
Views
7K