Using the property of the parabola that light rays from infinity are reflected to the focus, you see that the normal at the point of tangency makes an angle $\alpha/2$ with the horizontal. The centre of the circle has to lie on this normal line. Next, the value of $r$ when $\theta=\alpha$ is $\dfrac{2a}{1+\cos\alpha}$, and using a half-angle formula from trigonometry you can write this as $\dfrac{a}{\cos^2(\alpha/2)}.$
In the above diagram, the vertices of the pink triangle are the origin, the centre of the circle, and the point of tangency of the circle and parabola. The long side of the triangle has length $\dfrac{a}{\cos^2(\alpha/2)}$, and the centre of the circle has to lie on the perpendicular bisector of this line. The triangle is isosceles, its equal angles are both $\alpha/2$, and its shorter sides are both equal to the radius of the circle, call that $R$. It follows that $\dfrac{a}{2\cos^2(\alpha/2)} = R\cos(\alpha/2)$, and therefore $R = \dfrac{a}{2\cos^3(\alpha/2)}$. The polar coordinates of the centre of the circle are therefore $R$ and $\frac32\alpha$.
Now use the formula given
here for the polar equation of a circle through the origin, to get the polar equation of the circle as $r\cos^3\bigl(\frac12\alpha\bigr) = a\cos\bigl(\theta - \frac32\alpha\bigr).$
@ ILikeSerena: If I have understood this question correctly, it certainly isn't pre-university math! (But I don't know which section to transfer it to.)