MHB What is the equation of a line passing through (6, -3) with a y-intercept of 8?

  • Thread starter Thread starter mathdad
  • Start date Start date
Click For Summary
To find the equation of a line passing through the point (6, -3) with a y-intercept of 8, first identify the slope using the two points: (6, -3) and (0, 8). The slope can be calculated as (8 - (-3)) / (0 - 6) = 11 / -6. Using the point-slope formula, the equation can be expressed as y - (-3) = (-11/6)(x - 6). Rearranging this into slope-intercept form gives the final equation as y = (-11/6)x + 8. The discussion emphasizes the importance of expressing the final answer in the correct slope-intercept format.
mathdad
Messages
1,280
Reaction score
0
Find an equation of the line passing through (6, -3) and has y-intercept 8. Express final answer in the form y = mx + b.

If it has y-intercept 8, this means the point (0, 8).

I now have 2 points.

1. Find the slope

2. Use the point-slope formula

3. Solve for y

Correct?
 
Mathematics news on Phys.org
A line passing through the point:

$$\left(x_1,y_1\right)$$

And having the $y$-intercept $b$, expressed in slope intercept form, will be:

$$y=\frac{y_1-b}{x_1}x+b$$
 
Is my information correct?
 
RTCNTC said:
Is my information correct?

Essentially, although I would change step 3 to read "Arrange in slope-intercept form." It's not enough to just solve for y, because we could have solved for y but not used the slope-intercept form, such as:

$$y=m(x-a)+b$$

We would want to arrange this as:

$$y=mx+(b-ma)$$
 
By solving for y I meant slope-intercept form y = mx + b.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K