What is the equilibrium condition for a double inclined plane?

  • Thread starter Thread starter pooface
  • Start date Start date
  • Tags Tags
    Equilibrium
Click For Summary
SUMMARY

The discussion centers on determining the equilibrium condition for a double inclined plane system consisting of two boards, one 5m and the other 8m long, hinged together and supporting two blocks of equal weight. The coefficient of friction between the blocks and the boards is 0.3. Through calculations involving normal forces and frictional forces, it was established that the system is indeed in equilibrium, as both sides of the system yield negative acceleration when analyzed for potential movement. The key to understanding this equilibrium lies in correctly applying the forces acting on each block and recognizing the direction of frictional forces.

PREREQUISITES
  • Understanding of inclined plane physics
  • Knowledge of static and kinetic friction concepts
  • Ability to apply Newton's laws of motion
  • Familiarity with trigonometric functions in physics
NEXT STEPS
  • Study the principles of static equilibrium in mechanics
  • Learn about the calculations of forces on inclined planes
  • Explore the effects of varying coefficients of friction on equilibrium
  • Investigate the role of tension in pulley systems
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and inclined planes, as well as educators seeking to clarify concepts of equilibrium and friction in physical systems.

pooface
Messages
207
Reaction score
0

Homework Statement


two boards of length 5m and 8m are hinged together and the hinge supported 4m above the ground, thus forming a double inclined plane 13m long measured along the slopes. Two blocks of equal weight are placed on the boards and connected by a cord passing over a frictionless pulley at the apex. If the coefficient of friction between blocks and boards is 0.3

a) show that the system is in equilibrium.

http://img525.imageshack.us/img525/3209/q10fs0.jpg diagram

Homework Equations




The Attempt at a Solution


Block A: The left one.
FN=mgcos53.13deg
Frictionforce=mgcos53.15deg*(0.3)
=0.18mg
Force=mgsin53.13deg
=0.8mg

Block B: The right one.
FN=mgcos30deg
Frictionforce=mgcos30deg*(0.3)
=0.2598mg
Force=mgsin30deg
=0.5mg

If these calculations are correct then I don't see how they are in equilibrium.
 
Last edited by a moderator:
Physics news on Phys.org
Remember that the static friction force on each block is less than or equal to uN.
 
it doesn't state that the coefficient is static(implying equilibrium).

it only gives a coefficient of friction. After calculating the forces and friction forces and finding the net result it doesn't seem they are in equilibrium.

Can someone show where I am going wrong in my calculations?
 
What about mgsin(theta) component on each block? Further on one of the blocks the frictional force will be up the incline and on the other down.
 
yup i have accounted for all those factors.

If I use block A I get:

0.8(downwards force along slope) - 0.18(friction force) + 0.2598(friction force of block B) - 0.5(force of block B along slope) = 0.48
 
There must be some fundamental thing I am leaving out or that the system is not in equilibrium at all.

According to the professor it is.
 
The way I do these problems is to first assume that the system is in equilibrium (ie a = 0)... then see if the frictional forces come out to < uN... if they do, then they are indeed in equilibrium... if they don't, or can't... then the system isn't in equilibrium...

don't assume the frictional force is uN... just let the frictional forces be f1 and f2...

The system tends to try to accelerate to the left... so the left side has the fricion upward... right side has the friction downward...

for the left block.

mgsin(theta1) - T - f1 = 0
mg*4/5 - T - f1 = 0.

f1 = T - mg*4/5

what is the equivalent equation for the right block? what is f2?
 
T-mg*4/8 - f2=0
f2=T-mg*4/8

I think I see what is going on though.

If we assume the system accelerates to the left: The net force will be
mg*4/5 - f1(which is 0.18mg) - f2(which is 0.2598mg) - mg*4/8 = Negative answer!

By F=ma we get a negative acceleration.

If we assume the system accelerates to the RIGHT the net force will also be negative! This also gives negative acceleration. Therefore the system must be in equilibrium. I was just getting my signs mixed up which you cleared up. I was thinking the right side friction was going upwards.

Thanks lot learningphysics!
 
Ah... good. I was actually not thinking that way exactly. But that's better than what I was thinking! :)
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
12
Views
2K
  • · Replies 68 ·
3
Replies
68
Views
13K
  • · Replies 48 ·
2
Replies
48
Views
10K