A What is the Expression for the Waveform of an In-Spiralling Compact Binary?

  • A
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Waveform
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
This paper gives the following expression for the waveform from an in-spiralling compact binary:\begin{align*}
h(t;\boldsymbol{\theta}) = \frac{1}{r} Q(\boldsymbol{\phi}) \mathcal{M}(\pi \mathcal{M} F)^{2/3} \cos \Phi(t)
\end{align*}where
  • ##\boldsymbol{\phi} = (\theta, \varphi, \psi, \iota)## is a set of angles describing position & orientation of binary
  • ##\mathcal{M} \equiv \mu^{3/5} M^{2/5}## is the chirp mass
  • ##F(t)## is the wave frequency & ##\Phi(t) \equiv 2\pi \int F(t) dt## is the phase
I've been trying to find a derivation of this guy for quite a while, with no luck. The references lead to the book "300 years of Gravitation", which I'd have to wait until tomorrow to have a look at.

Also, what's the function ##Q## explicitly?
 
Physics news on Phys.org
(Disclaimer: I am not an expert in this area.) That paper cites an earlier paper (also found on arxiv here), where equation 15 is comparable to OP. The earlier paper points to Kip Thorne's book for the derivation, but also apparently goes into detail about the definition of Q in section IV (edit: see equation 66).
 
  • Informative
  • Like
Likes berkeman and ergospherical
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
4
Views
1K
Replies
16
Views
3K
Replies
11
Views
2K
Replies
2
Views
1K
Replies
6
Views
3K
Replies
21
Views
2K
Back
Top