What Is the Fastest Method to Solve This Complex Fraction Equation?

Click For Summary
SUMMARY

The fastest method to solve the complex fraction equation $\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$ involves multiplying both sides by the common denominator $(2m + x)(2k + x)(k + m + x)$. An alternative approach simplifies the equation by finding common factors, leading to the equation $(k-n)(2k+x)=(m-n)(2m+x)$, which can be solved for $x$ to yield $x=2(n-m-k)$. This method significantly reduces the complexity of the problem.

PREREQUISITES
  • Understanding of algebraic manipulation and simplification
  • Familiarity with solving equations involving fractions
  • Knowledge of common denominators in rational expressions
  • Ability to work with polynomial expressions and factorization
NEXT STEPS
  • Study techniques for simplifying complex fractions in algebra
  • Learn about polynomial factorization methods
  • Explore the use of common denominators in rational equations
  • Practice solving equations derived from rational expressions
USEFUL FOR

Students, educators, and anyone interested in enhancing their algebraic problem-solving skills, particularly in the context of complex fraction equations.

NotaMathPerson
Messages
82
Reaction score
0
Hello! I just want to solve this exercise using shortest way possible.

$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$

Because when I tried it is so lengthy. Maybe you can teach me how to go about it faster. Thanks
 
Mathematics news on Phys.org
NotaMathPerson said:
Hello! I just want to solve this exercise using shortest way possible.

$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$

Because when I tried it is so lengthy. Maybe you can teach me how to go about it faster. Thanks
The only way I can think of is to multiply both sides by (2m + x)(2k + x)(k + m + x). I don't see any other way to do the problem.

-Dan
 
NotaMathPerson said:
Hello! I just want to solve this exercise using shortest way possible.

$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$

Because when I tried it is so lengthy. Maybe you can teach me how to go about it faster. Thanks

The approach suggested by topsquark is a way, and you can also try to find the common factors so to simplify things in a more manageable and easier way, like this:

$$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{(k-n)+(m-n)}{k+m+x}$$

$$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k-n}{k+m+x}+\frac{m-n}{k+m+x}$$

$$\frac{k-n}{2m+x}-\frac{k-n}{k+m+x}=\frac{m-n}{k+m+x}-\frac{m-n}{2k+x}$$

$$\left(k-n\right)\left(\frac{1(k+m+x)-(2m+x)}{(2m+x)(k+m+x)}\right)=\left(m-n\right)\left(\frac{1(2k+x)-1(k+m+x)}{(k+m+x)(2k+x)}\right)$$

Since $$k+m+x\ne 0$$, we have:

$$\left(k-n\right)\left(\frac{k+m+x-2m-x}{2m+x}\right)=\left(m-n\right)\left(\frac{2k+x-k-m-x}{2k+x}\right)$$

$$\left(k-n\right)\left(\frac{k-m}{2m+x}\right)=\left(m-n\right)\left(\frac{k-m}{2k+x}\right)$$

And since $k\ne m$, we get:

$(k-n)(2k+x)=(m-n)(2m+x)$

Solve the above equation for $x$ we get $x=2(n-m-k)$.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K