MHB What Is the Fastest Method to Solve This Complex Fraction Equation?

NotaMathPerson
Messages
82
Reaction score
0
Hello! I just want to solve this exercise using shortest way possible.

$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$

Because when I tried it is so lengthy. Maybe you can teach me how to go about it faster. Thanks
 
Mathematics news on Phys.org
NotaMathPerson said:
Hello! I just want to solve this exercise using shortest way possible.

$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$

Because when I tried it is so lengthy. Maybe you can teach me how to go about it faster. Thanks
The only way I can think of is to multiply both sides by (2m + x)(2k + x)(k + m + x). I don't see any other way to do the problem.

-Dan
 
NotaMathPerson said:
Hello! I just want to solve this exercise using shortest way possible.

$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k+m-2n}{k+m+x}$

Because when I tried it is so lengthy. Maybe you can teach me how to go about it faster. Thanks

The approach suggested by topsquark is a way, and you can also try to find the common factors so to simplify things in a more manageable and easier way, like this:

$$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{(k-n)+(m-n)}{k+m+x}$$

$$\frac{k-n}{2m+x}+\frac{m-n}{2k+x}=\frac{k-n}{k+m+x}+\frac{m-n}{k+m+x}$$

$$\frac{k-n}{2m+x}-\frac{k-n}{k+m+x}=\frac{m-n}{k+m+x}-\frac{m-n}{2k+x}$$

$$\left(k-n\right)\left(\frac{1(k+m+x)-(2m+x)}{(2m+x)(k+m+x)}\right)=\left(m-n\right)\left(\frac{1(2k+x)-1(k+m+x)}{(k+m+x)(2k+x)}\right)$$

Since $$k+m+x\ne 0$$, we have:

$$\left(k-n\right)\left(\frac{k+m+x-2m-x}{2m+x}\right)=\left(m-n\right)\left(\frac{2k+x-k-m-x}{2k+x}\right)$$

$$\left(k-n\right)\left(\frac{k-m}{2m+x}\right)=\left(m-n\right)\left(\frac{k-m}{2k+x}\right)$$

And since $k\ne m$, we get:

$(k-n)(2k+x)=(m-n)(2m+x)$

Solve the above equation for $x$ we get $x=2(n-m-k)$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top