What is the final angular velocity of the system after the collision?

AI Thread Summary
The discussion centers on the application of conservation of energy in a collision scenario where two bodies stick together. It emphasizes that mechanical energy cannot be assumed to be conserved in inelastic collisions, as energy is absorbed during the coalescence. A hypothetical situation is presented where a ball bounces off a surface, illustrating that energy conservation applies only in perfectly elastic collisions. The participants agree that if the collision were elastic, conservation of energy could be used. Understanding the nature of the collision is crucial for determining the final angular velocity of the system.
hidemi
Messages
206
Reaction score
36
Homework Statement
A particle of mass m = 0.10 kg and speed v0 = 5.0 m/s collides and sticks to the end of a uniform solid cylinder of mass M = 1.0 kg and radius R = 20 cm. If the cylinder is initially at rest and is pivoted about a frictionless axle through its center, what is the final angular velocity (in rad/s) of the system after the collision?
(A) 8.1
(B) 2.0
(C) 6.1
(D) 4.2
(E) 10
Relevant Equations
Li = Lf = Iω
I calculated as attached and got it right. However, I just wonder why we can't use conservation of energy as the question has already specified 'frictionless', meaning no energy loss and energy distributed to the rotation only.
 

Attachments

  • 1.jpeg
    1.jpeg
    17.9 KB · Views: 219
  • 2.png
    2.png
    6.6 KB · Views: 215
Physics news on Phys.org
hidemi said:
why we can't use conservation of energy
You should never assume conservation of mechanical energy without good cause.
The scenario in this question is a coalescence: the two bodies stick together after colliding. Imagine what would happen if they did not do so, e.g. if it were a rubber ball hitting a protrusion from a concrete drum. Clearly the ball would bounce off. The glue that holds them together in the actual question has therefore absorbed the energy that would have been associated with that rebound.
 
haruspex said:
You should never assume conservation of mechanical energy without good cause.
The scenario in this question is a coalescence: the two bodies stick together after colliding. Imagine what would happen if they did not do so, e.g. if it were a rubber ball hitting a protrusion from a concrete drum. Clearly the ball would bounce off. The glue that holds them together in the actual question has therefore absorbed the energy that would have been associated with that rebound.
Oh I see.
If the question rephrases a bit, the ball hits the cylinder and bounces off as well as the frictionless remains, then the conservation of energy can be established. Let me know if I'm right.
 
hidemi said:
If the question rephrases a bit, the ball hits the cylinder and bounces off as well as the frictionless remains, then the conservation of energy can be established.
If it is a perfectly elastic bounce, yes.
 
haruspex said:
If it is a perfectly elastic bounce, yes.
Thank you so much.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top