What is the formula for calculating future value with increasing interest rates?

Click For Summary
SUMMARY

The formula for calculating future value with increasing interest rates is defined as \( FV(n)=P_0 \prod_{k=1}^n (1+r_0 \rho^{k-1}) \), where \(P_0\) is the principal amount, \(r_0\) is the initial interest rate, and \(\rho\) is the annual growth factor for the rate. In the provided example, starting with $1000.00 at a 3% interest rate, the rates increase by 10% each year, leading to a calculated future value based on the compounded interest. The parameters for this specific case are \(P_0\approx 741.228\), \(r_0\approx 0.0281893\), and \(\rho\approx 1.09871\).

PREREQUISITES
  • Understanding of compound interest principles
  • Familiarity with differential equations
  • Knowledge of exponential functions
  • Basic programming concepts for iterative calculations
NEXT STEPS
  • Study the application of differential equations in finance
  • Learn about exponential growth and decay functions
  • Explore programming techniques for financial modeling
  • Investigate alternative methods for calculating future value with variable interest rates
USEFUL FOR

Finance professionals, mathematicians, and anyone interested in advanced financial modeling techniques will benefit from this discussion.

Wilmer
Messages
303
Reaction score
0
Code:
YR    RATE      INTEREST      BALANCE
0                             1000.00
1    .03         30.00        1030.00
2    .033        33.99        1063.99
3    .0363       38.62        1102.61
4    .03993      44.03        1146.64
Above is an example of future value of an amount at an incresing rate:
$1000.00 at rate 3% 1st year, then the rate increasing by .10 each year.
As example, year2 rate = .03 * 1.10 = .033

What is the formula to calculate the future value in such circumstances?
 
Physics news on Phys.org
Wilmer said:
Code:
YR    RATE      INTEREST      BALANCE
0                             1000.00
1    .03         30.00        1030.00
2    .033        33.99        1063.99
3    .0363       38.62        1102.61
4    .03993      44.03        1146.64
Above is an example of future value of an amount at an incresing rate:
$1000.00 at rate 3% 1st year, then the rate increasing by .10 each year.
As example, year2 rate = .03 * 1.10 = .033

What is the formula to calculate the future value in such circumstances?

I can't see an obvious closed form (rather than a product with one term for each year), but this can be tackled by setting up the differential equation for continuously compounded interest with a linearly increasing interest rate.

The solution is then of the form:

\[ FV(t)=P_0 e^{\frac{r_0*\rho^t}{\log(\rho)}} \]

Where \(P_0,\ r_0\) and \(\rho\) are related to but not quite the principle, the initial interest rate and the annual interest growth factor.

In this case \(P_0\approx 741.228\), \( r_0\approx 0.0281893\) and \( \rho\approx 1.09871\)

CB
 
Thanks CB.
I thought there was a way, since the rates themselves can be "summed" by formula,
(like in example: .03 + .033 + .0363 + .03993 = .13923; .13923 / 4 = ~.0348)
then use an average...but that doesn't quite work...
 
Wilmer said:
Thanks CB.
I thought there was a way, since the rates themselves can be "summed" by formula,
(like in example: .03 + .033 + .0363 + .03993 = .13923; .13923 / 4 = ~.0348)
then use an average...but that doesn't quite work...

We want:

\[ FV(n)=P_0 \prod_{k=1}^n (1+r_0 \rho^{k-1}) , \ \ n\ge 1\]

where \(P_0\) is the principle, \(r_0\) the initial interest rate and \(\rho\) the annual groth factor for the rate.

Now there may be a way to express the product in a "nice" form but I can't see it.

CB
 
Agree. In "looper words":
a=1000:r=.03:i=.10:n=4

FOR y = 1 TO n

k = a * r [this period's interest]

a = a + k [this period's resulting principle]

PRINT y,k,a

r = r * i [update rate]

NEXT y
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
7K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K