What is the formula for the norm of a vector cross product?

Click For Summary
The discussion focuses on deriving the formula for the norm of the vector cross product, specifically addressing the calculation of the scalar product of the cross product of two vectors. The initial approach involved using Levi-Civita symbols and scalar products, but errors were identified in the application of relevant identities. The correct derivation leads to the conclusion that the norm of the cross product can be expressed as ||a × b|| = ||a|| ||b|| sin(α), where α is the angle between vectors a and b. Participants emphasized the importance of correctly applying tensor calculus rules to avoid common mistakes in calculations. The final result confirms the relationship between the cross product and the sine of the angle between the vectors.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Use the identity ##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}## to proof ##||\vec{a} \times \vec{b}||=||\vec{a}|| \cdot ||\vec{b}|| \sin{\alpha}##
Relevant Equations
##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}##
Hi everyone,

I'm having problems with task c

Bildschirmfoto 2023-11-16 um 11.04.05.png

In the task, the norm has already been defined, i.e. ##||\vec{c}||=\sqrt{\langle \vec{c}, \vec{c} \rangle }## I therefore first wanted to calculate the scalar product of the cross product, i.e. ##\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle## first

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk}a^{i}b^{j} \vec{e}_k \cdot \epsilon_{ijk}a^{i}b^{j} \vec{e}_k$$
$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk}a^{i}b^{j} \cdot \epsilon_{ijk}a^{i}b^{j}$$
$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} \epsilon_{ijk} ||a^{i}||^2 ||b^{j}||^2 $$

If I look at my calculation now, I've definitely made a mistake, but I don't know how else to arrive at the desired result.
I know I didn't use the identity ##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}##, but if I take the scalar product with itself, the epsilon would be ##\epsilon_{ijk} \epsilon_{ijk}## and not ##\epsilon_{ijk} \epsilon_{ilm}##, or not?
 
Physics news on Phys.org
How about starting with what is given?
\begin{align*}
\langle \mathrm{a}\times \mathrm{b}\ ,\ \mathrm{a}\times \mathrm{b} \rangle&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmn}\,a^l\,b^m \,\langle \mathrm{e}_k\ ,\ \mathrm{e}_n \rangle\\
&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmk}\,a^l\,b^m= \epsilon_{kij}\,\epsilon_{klm}\,a^i\,b^j\,a^l\,b^m\\
&=(\delta_{il}\delta_{jm} - \delta_{jk} \delta_{km})\,a^i\,b^j\,a^l\,b^m \\
&=a^i\,b^j\,a^i\,b^j \,-\, a^i\,b^k\,a^l\,b^k
&=\ldots
\end{align*}
... if I made no mistakes. I think your mistake was in the formula under "relevant equations". It should have been $$\epsilon_{ijk}\epsilon_{ilm}=\delta_{jl} \delta_{km}- \delta_{jm} \delta_{kl} $$ like in ##\delta_{22} \delta_{33}- \delta_{23} \delta_{32}.##
 
fresh_42 said:
How about starting with what is given?
\begin{align*}
\langle \mathrm{a}\times \mathrm{b}\ ,\ \mathrm{a}\times \mathrm{b} \rangle&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmn}\,a^l\,b^m \,\langle \mathrm{e}_k\ ,\ \mathrm{e}_n \rangle\\
&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmk}\,a^l\,b^m= \epsilon_{kij}\,\epsilon_{klm}\,a^i\,b^j\,a^l\,b^m\\
&=(\delta_{il}\delta_{jm} - \delta_{jk} \delta_{km})\,a^i\,b^j\,a^l\,b^m \\
&=a^i\,b^j\,a^i\,b^j \,-\, a^i\,b^k\,a^l\,b^k
&=\ldots
\end{align*}
... if I made no mistakes.
Typo, but the final expression violates the third commandment.
fresh_42 said:
I think your mistake was in the formula under "relevant equations".
That is a typo, yes, but there are worse mistakes as well.
 
Last edited by a moderator:
Thank you Orodruin and fresh_42 for your help 👍👍

Thanks also Orodruin for the link, it helped me a lot 👍

I have now proceeded as follows:

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \bigl( \vec{a} \times \vec{b} \bigr)_i \cdot \bigl( \vec{a} \times \vec{b} \bigr)_i$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} a^{j}b^{k} \epsilon_{ilm} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} \epsilon_{ilm} a^{j}b^{k} a^{l} b^{m}$$$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \bigl( \delta_{jl} \delta_{km} -\delta_{jm} \delta_{kl} \bigr) a^{j}b^{k} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \delta_{jl} \delta_{km} a^{j}b^{k} a^{l} b^{m} -\delta_{jm} \delta_{kl} a^{j}b^{k} a^{l} b^{m} $$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = a^{l}b^{m} a^{l} b^{m} - a^{m}b^{l} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle =\bigl( \vec{a} \cdot \vec{a} \bigr) \bigl( \vec{b} \cdot \vec{b} \bigr) - \bigl( \vec{a} \cdot \vec{b} \bigr) \cdot \bigl( \vec{a} \cdot \vec{b} \bigr) $$$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 - ||\vec{a}||^2 \cdot ||\vec{b}||^2 \cos^2{\alpha}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 \bigl( 1 - \cos^2{\alpha} \bigr) $$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 \sin^2{\alpha}$$

$$|| \vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \sin{\alpha}$$
 
It's a bit simpler to use the index-free calculus in this case and use the additional rule
$$\vec{u} \cdot (\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}.$$
Setting ##\vec{u}=\vec{a} \times \vec{b}## and ##\vec{v}=\vec{a}## and ##\vec{w}=\vec{b}## this gives
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) =[ (\vec{a} \times \vec{b})\times \vec{a}] \cdot \vec{b}.$$
Now you use the formula for the triple vector product (which is equivalent to the given formula for the Levi-Civita symbols),
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = [\vec{b} (\vec{a} \cdot \vec{a}) - \vec{a} (\vec{a} \cdot \vec{b}] \cdot \vec{b} = \|vec{a} \|^2 \|\vec{b}|^2 [1-\cos^2 \angle (\vec{a},\vec{b})]=\|\vec{a}|^2 \|\vec{b} \|^2 \sin^2 \angle (\vec{a},\vec{b}).$$
Since by definite ##\angle(\vec{a},\vec{b}) \in [0,\pi]## the sine is ##\geq 0## and thus
$$\|\vec{a} \times \vec{b} \| = \|\vec{a} \| \|\vec{b} \| \sin \angle(\vec{a},\vec{b}).$$
 
Last edited by a moderator:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K