MHB What is the Hypergeometric Challenge #2?

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

$$_2F_1 \left(a,1-a;c; \frac{1}{2} \right) = \frac{\Gamma \left(\frac{c}{2} \right)\Gamma \left(\frac{1+c}{2} \right) } {\Gamma \left(\frac{c+a}{2}\right)\Gamma \left(\frac{1+c-a}{2}\right)}.$$​
 
Mathematics news on Phys.org
This only took me a couple of hours to figure out.(Whew)Using Euler's integral representation of ${}_2F_{1}(a,b;c;z)$,

$$\displaystyle {}_2F_{1} \left(a,1-a;c;\frac{1}{2} \right) = \frac{\Gamma(c)}{\Gamma(1-a) \Gamma(a+c-1)} \int_{0}^{1} t^{-a} (1-t)^{a+c-2} \left(1- \frac{t}{2} \right)^{-a} \ dt$$

$$ = \frac{\Gamma(c)}{\Gamma(1-a) \Gamma(a+c-1)} \int_{0}^{1} (1-u)^{-a} u^{a+c-2} \left(\frac{1}{2} + \frac{u}{2} \right)^{-a} \ du$$

$$ = \frac{2^{a} \ \Gamma(c)}{\Gamma(1-a) \Gamma(a+c-1)} \int_{0}^{1} u^{a+c-2} (1-u^{2})^{-a} \ du $$

$$ = \frac{2^{a-1} \ \Gamma(c)}{\Gamma(1-a) \Gamma(a+c-1)} \int_{0}^{1} w^{\frac{a}{2} + \frac{c}{2} -\frac{3}{2}} (1-w)^{-a} \ dw$$

$$= \frac{2^{a-1} \ \Gamma(c)}{\Gamma(1-a) \Gamma(c+a-1)} \frac{\Gamma(\frac{a}{2} + \frac{c}{2}- \frac{1}{2}) \Gamma(1-a)}{\Gamma(\frac{c}{2}- \frac{a}{2}+ \frac{1}{2})} = \frac{2^{a-1} \ \Gamma(c)}{\Gamma(a+c-1)} \frac{\Gamma(\frac{a}{2} + \frac{c}{2}- \frac{1}{2}) }{\Gamma(\frac{c}{2}- \frac{a}{2}+ \frac{1}{2})}$$

$$ = \frac{2^{a-1} \ \Gamma(c)}{\Gamma(a+c-1)} \frac{\Gamma\big(\frac{1}{2} (a + c- 1)\big)}{\Gamma(\frac{c}{2}- \frac{a}{2}+ \frac{1}{2}) } $$

And using the duplication formula twice,

$$ = 2^{a-1} \frac{2^{c-1} \Gamma(\frac{c}{2}) \Gamma (\frac{c}{2}+ \frac{1}{2})}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2^{a+c-2}\Gamma(\frac{a}{2} + \frac{c}{2})} \frac{1}{\Gamma(\frac{c}{2} - \frac{a}{2} + \frac{1}{2})}$$

$$ = \frac{\Gamma(\frac{c}{2}) \Gamma(\frac{c}{2} + \frac{1}{2})}{\Gamma(\frac{a}{2} + \frac{c}{2}) \Gamma(\frac{c}{2} - \frac{a}{2} + \frac{1}{2})}$$
 
Hey Greg , I am pleased to have you back . Using the duplication formula was the tricky part and using it twice is surely tiresome !
 
What seems even more tricky is to use Euler's integral representation to show that $$ \displaystyle _{2}F_{1}\left( a,b;\frac{a+b+1}{2},\frac{1}{2} \right) = \frac{\sqrt{\pi} \ \Gamma (\frac{a+b+1}{2})}{\Gamma(\frac{a+1}{2}) \Gamma (\frac{b+1}{2})}$$

Wikipedia refers to this as Gauss' second summation theorem.
 
I would use a combination of euler transformation and kummer equation . Staring from scratch is sureley cumbersome!
 
By the way greg have you worked th mellin transform of the gauss hypergeometric function ,it is quite interesting.
See here
 
You can use Ramanujan's master formula to evaluate the Mellin transform of $$ {}_pF_{q} (a_{1},a_{2}, \ldots, a_{p};b_{1},b_{2}, \ldots, b_{q}; -x) = \sum_{k=0}^{\infty} \frac{\Gamma(a_{1}+k) \Gamma(a_{2}+k) \cdots \Gamma(a_{p}+k) \Gamma(b_{1}) \Gamma(b_{2}) \cdots \Gamma(b_{q})}{\Gamma(a_{1}) \Gamma(a_{2}) \cdots \Gamma(a_{p}) \Gamma (b_{1}+k) \Gamma(b_{2}+k) \cdots \Gamma(b_{q}+k)} \frac{(-x)^{k}}{k!}$$

Specifically, $$ \int_{0}^{\infty} x^{s-1} {}_pF_{q} (a_{1},a_{2}, \ldots, a_{p};b_{1},b_{2}, \ldots, b_{q}; -x) \ dx = \Gamma(s) \ \frac{\Gamma(a_{1}-s) \Gamma(a_{2}-s) \cdots \Gamma(a_{p}-s) \Gamma(b_{1}) \Gamma(b_{2}) \cdots \Gamma(b_{q})}{\Gamma(a_{1}) \Gamma(a_{2}) \cdots \Gamma(a_{p}) \Gamma (b_{1}-s) \Gamma(b_{2}-s) \cdots \Gamma(b_{q}-s)}$$

I've used the formula to evaluate the Mellin transforms of functions with simple hypergeometric representations of that form.
 
Yes , quite remarkable theorem , thanks to Ramnujan .
 
Back
Top