MHB What is the intersection of two spans?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Intersection
Click For Summary
The discussion focuses on finding the intersection of two spans in R^4, specifically Lin(v_1, v_2, v_3) and Lin(w_1, w_2). Participants propose solving a system of equations derived from expressing a vector as linear combinations of both sets of vectors. Through Gaussian elimination, they conclude that the only solution is the zero vector, indicating that the intersection of the two spans contains only the zero vector. Additionally, it is noted that the vectors v_1, v_2, and v_3 are linearly dependent. The final consensus confirms that the intersection is indeed just the zero vector.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let \begin{equation*}v_1:=\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}, v_2:=\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}, v_3:=\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} , w_1:=\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}, w_2:=\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\in \mathbb{R}^4\end{equation*}

I want to calculate the intersection of the spans $\text{Lin}(v_1, v_2, v_3)\cap \text{Lin}(w_1, w_2)$.We have \begin{align*}&\text{Lin}(v_1, v_2, v_3)=\left \{\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 : \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \}=\left \{\lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}: \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \} \\ & \text{Lin}(w_1, w_2)=\left \{\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}=\left \{\tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}\end{align*}

How could we continue?

Do we have to solve a system? We take a vector $(a,b,c,d)^T$ and try to write it as a linear combination of the $v_i$'s and then as a linear combination of the $w_i$'s ?

(Wondering)
 
Physics news on Phys.org
Hey mathmari!

The intersection is all vectors that can both be written as $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3$ and as $\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2$.
So let's solve:
$$
\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 = \tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 \\

\implies \lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} = \tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\\

\implies \lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} - \tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}-\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} = 0 \\

\implies \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0
$$
Can we solve that? (Wondering)
 
We apply the Gauss algorithm and we get the following: \begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix} &\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 & 2 & -6 & -2 & 1 \\
0 & -2 & 6 & 0 & -2\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 & 2 & -6 & -2 & 1 \\
0 & 0 & 0 & -2 & -1\end{pmatrix} \\ & \rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & -2 & -1\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\end{align*}

From here we get the following:
\begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0&\Rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0 \\ & \Rightarrow \left\{\begin{matrix}\lambda_1+\lambda_2-\lambda_3-\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ -\lambda_2+\lambda_3+2\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_2=0\end{matrix}\right.\end{align*}

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=\lambda_3$. Form the first equation we get $\lambda_1=0$.

Does this mean that the intersection contain only the zero vector? (Wondering)
 
Suppose we fill in your solution:
$$\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}0 \\ \lambda_2\\ \lambda_2 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix}0 \\ 2\lambda_2\\ -4\lambda_2 \\ 4\lambda_2 \end{pmatrix}
$$

That is not always zero is it? (Wondering)

What did you do in the second step of the Gaussian elimination? (Worried)
 
Klaas van Aarsen said:
Suppose we fill in your solution:
$$\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}0 \\ \lambda_2\\ \lambda_2 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix}0 \\ 2\lambda_2\\ -4\lambda_2 \\ 4\lambda_2 \end{pmatrix}
$$

That is not always zero is it? (Wondering)

What did you do in the second step of the Gaussian elimination? (Worried)

I found a typo at the last step.

It should be as follows:

\begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0&\Rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0 \\ & \Rightarrow \left\{\begin{matrix}\lambda_1+\lambda_2-\lambda_3-\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ -\lambda_2+3\lambda_3+2\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_2=0\end{matrix}\right.\end{align*}

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=0$.

And so with both linear combinations we get the zero vector, correct? (Wondering)
 
mathmari said:
From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=0$.

And so with both linear combinations we get the zero vector, correct?

If I substitute the new solution, I still don't get a zero vector. (Worried)
 
Klaas van Aarsen said:
If I substitute the new solution, I still don't get a zero vector. (Worried)

Oh sorry, in my previous post I didn't corrected the value of $\lambda_1$.

It should be:

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=-2\lambda_3$.

Therefore we have the following:

\begin{align*}-2\lambda_3\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+3\lambda_3\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} &=\lambda_3\begin{pmatrix}-2 \\ -4\\ 2 \\ -6\end{pmatrix}+\lambda_3\begin{pmatrix}3 \\ 3\\ 3 \\ 3\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} \\ & =\lambda_3\left [\begin{pmatrix}-2 \\ -4\\ 2 \\ -6\end{pmatrix}+\begin{pmatrix}3 \\ 3\\ 3 \\ 3\end{pmatrix}+\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}\right ]\\ & =\lambda_3\begin{pmatrix}0 \\ 0\\ 0 \\ 0\end{pmatrix} \\ & =\begin{pmatrix}0 \\ 0\\ 0 \\ 0\end{pmatrix}\end{align*}
 
Ah okay.
So yes, then we have found indeed that the intersection is only the zero vector. (Nod)

Moreover, the vectors $v_1,v_2,v_3$ are linearly dependent. (Nerd)
 
Klaas van Aarsen said:
Ah okay.
So yes, then we have found indeed that the intersection is only the zero vector. (Nod)

Moreover, the vectors $v_1,v_2,v_3$ are linearly dependent. (Nerd)

Ah ok! Thank you! (Sun)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
Replies
8
Views
2K
Replies
31
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K