What is the intersection of two spans?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Intersection
Click For Summary
SUMMARY

The discussion focuses on calculating the intersection of two spans in 4: the span of vectors v_1, v_2, and v_3 versus the span of vectors w_1 and w_2. The participants determine that the intersection consists solely of the zero vector, confirming that the vectors v_1, v_2, and v_3 are linearly dependent. The solution involves setting up a system of equations derived from linear combinations and applying Gaussian elimination to arrive at the conclusion.

PREREQUISITES
  • Understanding of vector spaces and spans in linear algebra
  • Familiarity with linear combinations of vectors
  • Knowledge of Gaussian elimination for solving systems of equations
  • Concept of linear dependence and independence of vectors
NEXT STEPS
  • Study the properties of vector spaces and their dimensions
  • Learn about the implications of linear dependence in vector sets
  • Explore advanced techniques in Gaussian elimination and matrix rank
  • Investigate applications of spans in higher-dimensional spaces
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for examples of vector span intersections and linear dependence concepts.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let \begin{equation*}v_1:=\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}, v_2:=\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}, v_3:=\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} , w_1:=\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}, w_2:=\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\in \mathbb{R}^4\end{equation*}

I want to calculate the intersection of the spans $\text{Lin}(v_1, v_2, v_3)\cap \text{Lin}(w_1, w_2)$.We have \begin{align*}&\text{Lin}(v_1, v_2, v_3)=\left \{\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 : \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \}=\left \{\lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}: \lambda_1, \lambda_2, \lambda_3\in \mathbb{R}\right \} \\ & \text{Lin}(w_1, w_2)=\left \{\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}=\left \{\tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} : \tilde{\lambda}_1, \tilde{\lambda}_2\in \mathbb{R}\right \}\end{align*}

How could we continue?

Do we have to solve a system? We take a vector $(a,b,c,d)^T$ and try to write it as a linear combination of the $v_i$'s and then as a linear combination of the $w_i$'s ?

(Wondering)
 
Physics news on Phys.org
Hey mathmari!

The intersection is all vectors that can both be written as $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3$ and as $\tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2$.
So let's solve:
$$
\lambda_1v_1+\lambda_2v_2+\lambda_3v_3 = \tilde{\lambda}_1w_1+\tilde{\lambda}_2w_2 \\

\implies \lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} = \tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}+\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix}\\

\implies \lambda_1\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+\lambda_2\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} - \tilde{\lambda}_1\begin{pmatrix}1 \\ 2\\ -3 \\ 3\end{pmatrix}-\tilde{\lambda}_2\begin{pmatrix}1 \\ 0\\ 0 \\ 1\end{pmatrix} = 0 \\

\implies \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0
$$
Can we solve that? (Wondering)
 
We apply the Gauss algorithm and we get the following: \begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix} &\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 & 2 & -6 & -2 & 1 \\
0 & -2 & 6 & 0 & -2\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 & 2 & -6 & -2 & 1 \\
0 & 0 & 0 & -2 & -1\end{pmatrix} \\ & \rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & -2 & -1\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\end{align*}

From here we get the following:
\begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0&\Rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0 \\ & \Rightarrow \left\{\begin{matrix}\lambda_1+\lambda_2-\lambda_3-\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ -\lambda_2+\lambda_3+2\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_2=0\end{matrix}\right.\end{align*}

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=\lambda_3$. Form the first equation we get $\lambda_1=0$.

Does this mean that the intersection contain only the zero vector? (Wondering)
 
Suppose we fill in your solution:
$$\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}0 \\ \lambda_2\\ \lambda_2 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix}0 \\ 2\lambda_2\\ -4\lambda_2 \\ 4\lambda_2 \end{pmatrix}
$$

That is not always zero is it? (Wondering)

What did you do in the second step of the Gaussian elimination? (Worried)
 
Klaas van Aarsen said:
Suppose we fill in your solution:
$$\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}0 \\ \lambda_2\\ \lambda_2 \\ 0 \\ 0 \end{pmatrix}
= \begin{pmatrix}0 \\ 2\lambda_2\\ -4\lambda_2 \\ 4\lambda_2 \end{pmatrix}
$$

That is not always zero is it? (Wondering)

What did you do in the second step of the Gaussian elimination? (Worried)

I found a typo at the last step.

It should be as follows:

\begin{align*}\begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
2 & 1 & 1 & 2 & 0 \\
-1 & 1 & -5 & -3 & 0 \\
3 & 1 & 3 & 3 & 1\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0&\Rightarrow \begin{pmatrix}
1 & 1 & -1 & 1 & 1 \\
0 & -1 & 3 & 0 & -2 \\
0 &0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & -2\end{pmatrix}\begin{pmatrix}\lambda_1 \\ \lambda_2\\ \lambda_3 \\ - \tilde{\lambda}_1\\ -\tilde{\lambda}_2\end{pmatrix} = 0 \\ & \Rightarrow \left\{\begin{matrix}\lambda_1+\lambda_2-\lambda_3-\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ -\lambda_2+3\lambda_3+2\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_1-\tilde{\lambda}_2=0 \\ 2\tilde{\lambda}_2=0\end{matrix}\right.\end{align*}

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=0$.

And so with both linear combinations we get the zero vector, correct? (Wondering)
 
mathmari said:
From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=0$.

And so with both linear combinations we get the zero vector, correct?

If I substitute the new solution, I still don't get a zero vector. (Worried)
 
Klaas van Aarsen said:
If I substitute the new solution, I still don't get a zero vector. (Worried)

Oh sorry, in my previous post I didn't corrected the value of $\lambda_1$.

It should be:

From the last equation we get $\tilde{\lambda}_2=0$. From the third one we get then $\tilde{\lambda}_1=0$. From the second equation we get then $\lambda_2=3\lambda_3$. Form the first equation we get $\lambda_1=-2\lambda_3$.

Therefore we have the following:

\begin{align*}-2\lambda_3\begin{pmatrix}1 \\ 2\\ -1 \\ 3\end{pmatrix}+3\lambda_3\begin{pmatrix}1 \\ 1\\ 1 \\ 1\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} &=\lambda_3\begin{pmatrix}-2 \\ -4\\ 2 \\ -6\end{pmatrix}+\lambda_3\begin{pmatrix}3 \\ 3\\ 3 \\ 3\end{pmatrix}+\lambda_3\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix} \\ & =\lambda_3\left [\begin{pmatrix}-2 \\ -4\\ 2 \\ -6\end{pmatrix}+\begin{pmatrix}3 \\ 3\\ 3 \\ 3\end{pmatrix}+\begin{pmatrix}-1 \\ 1\\ -5 \\ 3\end{pmatrix}\right ]\\ & =\lambda_3\begin{pmatrix}0 \\ 0\\ 0 \\ 0\end{pmatrix} \\ & =\begin{pmatrix}0 \\ 0\\ 0 \\ 0\end{pmatrix}\end{align*}
 
Ah okay.
So yes, then we have found indeed that the intersection is only the zero vector. (Nod)

Moreover, the vectors $v_1,v_2,v_3$ are linearly dependent. (Nerd)
 
Klaas van Aarsen said:
Ah okay.
So yes, then we have found indeed that the intersection is only the zero vector. (Nod)

Moreover, the vectors $v_1,v_2,v_3$ are linearly dependent. (Nerd)

Ah ok! Thank you! (Sun)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
Replies
31
Views
3K
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K