MHB What is the Limit as n Approaches Infinity of the Integration of Cosine squared?

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration Limit
AI Thread Summary
The limit as n approaches infinity of the integral of cosine squared is evaluated using the expression I_n = √n ∫₀^(π/4) cos^(2n-2)(x) dx. Through variable substitutions, the integral is transformed, allowing the application of Lebesgue's dominated convergence theorem. This leads to the conclusion that lim(n→∞) I_n = ∫₀^∞ e^(-z²) dz, resulting in the value √π/2. An alternative method using the beta and gamma functions confirms this limit, showing that the integral converges to the same result as n approaches infinity.
juantheron
Messages
243
Reaction score
1
Finding $$\lim_{n\rightarrow \infty}\sqrt{n}\int^{\frac{\pi}{4}}_{0}\cos^{2n-2}(z)dz$$
 
Mathematics news on Phys.org
Solution [Sp]Put
\begin{equation*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}\cos^{2n-2}(x)\,\mathrm{d}x.
\end{equation*}
Via the substitutions $ y=\sin x $ and $ y=\frac{z}{\sqrt{n-1}} $ we get
\begin{gather*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}(1-\sin^2(x))^{n-1}\,\mathrm{d}x = \sqrt{n}\int_{0}^{1/\sqrt{2}}(1-y^2)^{n-1}\cdot\dfrac{1}{\sqrt{1-y^2}}\,\mathrm{d}y =\\[2ex]
\dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\sqrt{n-1}\left/\sqrt{2}\right.}\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}\,\mathrm{d}z = \dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\infty}f_{n(z)}\,\mathrm{d}z
\end{gather*}
where
\begin{equation*}
f_{n}(z)=\begin{cases}
\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}&\mbox{ if } 0<z<\sqrt{n-1}\left/\sqrt{2}\right.\\
0&\mbox{ if } z>\sqrt{n-1}\left/\sqrt{2}\right.
\end{cases}
\end{equation*}Then $ 0 \le f_{n}(z)<e^{-z^2}\cdot \dfrac{1}{\sqrt{1-1/2}} $ and $\displaystyle \lim_{n\to \infty}f_{n}(z) = e^{-z^2}.$Consequently, according to Lebesgue's dominated convergence theorem
\begin{equation*}
\lim_{n\to \infty}I_{n} = \int_{0}^{\infty}e^{-z^2}\,\mathrm{d}z =\dfrac{\sqrt{\pi}}{2}.
\end{equation*}**Remark.** This is an alternative answer where we use the beta function and the gamma function. From https://en.wikipedia.org/wiki/Beta_functionwe get
\begin{equation*}
\sqrt{n}\int_{0}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x = \dfrac{\sqrt{n}\,\Gamma(n-\frac{1}{2})}{\Gamma(n)}\cdot\dfrac{\sqrt{\pi}}{2}\to \dfrac{\sqrt{\pi}}{2}, \mbox{ as } n\to \infty
\end{equation*}
where we find the limit here https://en.wikipedia.org/wiki/Gamma_functionSince
\begin{equation*}
0 \le \sqrt{n}\int_{\pi/4}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x \le \sqrt{n}\,2^{1-n}\cdot\dfrac{\pi}{4} \to 0, \mbox{ as } n\to \infty
\end{equation*}[/Sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top