MHB What is the Limit as n Approaches Infinity of the Integration of Cosine squared?

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration Limit
Click For Summary
The limit as n approaches infinity of the integral of cosine squared is evaluated using the expression I_n = √n ∫₀^(π/4) cos^(2n-2)(x) dx. Through variable substitutions, the integral is transformed, allowing the application of Lebesgue's dominated convergence theorem. This leads to the conclusion that lim(n→∞) I_n = ∫₀^∞ e^(-z²) dz, resulting in the value √π/2. An alternative method using the beta and gamma functions confirms this limit, showing that the integral converges to the same result as n approaches infinity.
juantheron
Messages
243
Reaction score
1
Finding $$\lim_{n\rightarrow \infty}\sqrt{n}\int^{\frac{\pi}{4}}_{0}\cos^{2n-2}(z)dz$$
 
Mathematics news on Phys.org
Solution [Sp]Put
\begin{equation*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}\cos^{2n-2}(x)\,\mathrm{d}x.
\end{equation*}
Via the substitutions $ y=\sin x $ and $ y=\frac{z}{\sqrt{n-1}} $ we get
\begin{gather*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}(1-\sin^2(x))^{n-1}\,\mathrm{d}x = \sqrt{n}\int_{0}^{1/\sqrt{2}}(1-y^2)^{n-1}\cdot\dfrac{1}{\sqrt{1-y^2}}\,\mathrm{d}y =\\[2ex]
\dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\sqrt{n-1}\left/\sqrt{2}\right.}\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}\,\mathrm{d}z = \dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\infty}f_{n(z)}\,\mathrm{d}z
\end{gather*}
where
\begin{equation*}
f_{n}(z)=\begin{cases}
\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}&\mbox{ if } 0<z<\sqrt{n-1}\left/\sqrt{2}\right.\\
0&\mbox{ if } z>\sqrt{n-1}\left/\sqrt{2}\right.
\end{cases}
\end{equation*}Then $ 0 \le f_{n}(z)<e^{-z^2}\cdot \dfrac{1}{\sqrt{1-1/2}} $ and $\displaystyle \lim_{n\to \infty}f_{n}(z) = e^{-z^2}.$Consequently, according to Lebesgue's dominated convergence theorem
\begin{equation*}
\lim_{n\to \infty}I_{n} = \int_{0}^{\infty}e^{-z^2}\,\mathrm{d}z =\dfrac{\sqrt{\pi}}{2}.
\end{equation*}**Remark.** This is an alternative answer where we use the beta function and the gamma function. From https://en.wikipedia.org/wiki/Beta_functionwe get
\begin{equation*}
\sqrt{n}\int_{0}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x = \dfrac{\sqrt{n}\,\Gamma(n-\frac{1}{2})}{\Gamma(n)}\cdot\dfrac{\sqrt{\pi}}{2}\to \dfrac{\sqrt{\pi}}{2}, \mbox{ as } n\to \infty
\end{equation*}
where we find the limit here https://en.wikipedia.org/wiki/Gamma_functionSince
\begin{equation*}
0 \le \sqrt{n}\int_{\pi/4}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x \le \sqrt{n}\,2^{1-n}\cdot\dfrac{\pi}{4} \to 0, \mbox{ as } n\to \infty
\end{equation*}[/Sp]
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
6
Views
2K