What is the Limit as n Approaches Infinity of the Integration of Cosine squared?

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration Limit
Click For Summary
SUMMARY

The limit as n approaches infinity of the integral $$\lim_{n\rightarrow \infty}\sqrt{n}\int^{\frac{\pi}{4}}_{0}\cos^{2n-2}(z)dz$$ converges to $$\frac{\sqrt{\pi}}{2}$$. This conclusion is derived using substitutions and the application of Lebesgue's dominated convergence theorem. An alternative approach utilizing the beta function and gamma function also confirms this limit, demonstrating the robustness of the solution. The analysis shows that contributions from the interval $$[\frac{\pi}{4}, \frac{\pi}{2}]$$ vanish as n increases.

PREREQUISITES
  • Understanding of Lebesgue's dominated convergence theorem
  • Familiarity with beta and gamma functions
  • Knowledge of integration techniques involving trigonometric functions
  • Proficiency in limits and asymptotic analysis
NEXT STEPS
  • Study Lebesgue's dominated convergence theorem in detail
  • Explore the properties and applications of beta and gamma functions
  • Learn advanced integration techniques for trigonometric functions
  • Investigate asymptotic analysis methods in calculus
USEFUL FOR

Mathematicians, calculus students, and researchers in analysis who are interested in advanced integration techniques and limit evaluation methods.

juantheron
Messages
243
Reaction score
1
Finding $$\lim_{n\rightarrow \infty}\sqrt{n}\int^{\frac{\pi}{4}}_{0}\cos^{2n-2}(z)dz$$
 
Physics news on Phys.org
Solution [Sp]Put
\begin{equation*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}\cos^{2n-2}(x)\,\mathrm{d}x.
\end{equation*}
Via the substitutions $ y=\sin x $ and $ y=\frac{z}{\sqrt{n-1}} $ we get
\begin{gather*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}(1-\sin^2(x))^{n-1}\,\mathrm{d}x = \sqrt{n}\int_{0}^{1/\sqrt{2}}(1-y^2)^{n-1}\cdot\dfrac{1}{\sqrt{1-y^2}}\,\mathrm{d}y =\\[2ex]
\dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\sqrt{n-1}\left/\sqrt{2}\right.}\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}\,\mathrm{d}z = \dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\infty}f_{n(z)}\,\mathrm{d}z
\end{gather*}
where
\begin{equation*}
f_{n}(z)=\begin{cases}
\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}&\mbox{ if } 0<z<\sqrt{n-1}\left/\sqrt{2}\right.\\
0&\mbox{ if } z>\sqrt{n-1}\left/\sqrt{2}\right.
\end{cases}
\end{equation*}Then $ 0 \le f_{n}(z)<e^{-z^2}\cdot \dfrac{1}{\sqrt{1-1/2}} $ and $\displaystyle \lim_{n\to \infty}f_{n}(z) = e^{-z^2}.$Consequently, according to Lebesgue's dominated convergence theorem
\begin{equation*}
\lim_{n\to \infty}I_{n} = \int_{0}^{\infty}e^{-z^2}\,\mathrm{d}z =\dfrac{\sqrt{\pi}}{2}.
\end{equation*}**Remark.** This is an alternative answer where we use the beta function and the gamma function. From https://en.wikipedia.org/wiki/Beta_functionwe get
\begin{equation*}
\sqrt{n}\int_{0}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x = \dfrac{\sqrt{n}\,\Gamma(n-\frac{1}{2})}{\Gamma(n)}\cdot\dfrac{\sqrt{\pi}}{2}\to \dfrac{\sqrt{\pi}}{2}, \mbox{ as } n\to \infty
\end{equation*}
where we find the limit here https://en.wikipedia.org/wiki/Gamma_functionSince
\begin{equation*}
0 \le \sqrt{n}\int_{\pi/4}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x \le \sqrt{n}\,2^{1-n}\cdot\dfrac{\pi}{4} \to 0, \mbox{ as } n\to \infty
\end{equation*}[/Sp]
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K