MHB What is the Limit as n Approaches Infinity of the Integration of Cosine squared?

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Integration Limit
AI Thread Summary
The limit as n approaches infinity of the integral of cosine squared is evaluated using the expression I_n = √n ∫₀^(π/4) cos^(2n-2)(x) dx. Through variable substitutions, the integral is transformed, allowing the application of Lebesgue's dominated convergence theorem. This leads to the conclusion that lim(n→∞) I_n = ∫₀^∞ e^(-z²) dz, resulting in the value √π/2. An alternative method using the beta and gamma functions confirms this limit, showing that the integral converges to the same result as n approaches infinity.
juantheron
Messages
243
Reaction score
1
Finding $$\lim_{n\rightarrow \infty}\sqrt{n}\int^{\frac{\pi}{4}}_{0}\cos^{2n-2}(z)dz$$
 
Mathematics news on Phys.org
Solution [Sp]Put
\begin{equation*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}\cos^{2n-2}(x)\,\mathrm{d}x.
\end{equation*}
Via the substitutions $ y=\sin x $ and $ y=\frac{z}{\sqrt{n-1}} $ we get
\begin{gather*}
I_{n}=\sqrt{n}\int_{0}^{\pi/4}(1-\sin^2(x))^{n-1}\,\mathrm{d}x = \sqrt{n}\int_{0}^{1/\sqrt{2}}(1-y^2)^{n-1}\cdot\dfrac{1}{\sqrt{1-y^2}}\,\mathrm{d}y =\\[2ex]
\dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\sqrt{n-1}\left/\sqrt{2}\right.}\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}\,\mathrm{d}z = \dfrac{\sqrt{n}}{\sqrt{n-1}}\int_{0}^{\infty}f_{n(z)}\,\mathrm{d}z
\end{gather*}
where
\begin{equation*}
f_{n}(z)=\begin{cases}
\left(1-\dfrac{z^2}{n-1}\right)^{n-1}\cdot\dfrac{1}{\sqrt{1-\dfrac{z^2}{n-1}}}&\mbox{ if } 0<z<\sqrt{n-1}\left/\sqrt{2}\right.\\
0&\mbox{ if } z>\sqrt{n-1}\left/\sqrt{2}\right.
\end{cases}
\end{equation*}Then $ 0 \le f_{n}(z)<e^{-z^2}\cdot \dfrac{1}{\sqrt{1-1/2}} $ and $\displaystyle \lim_{n\to \infty}f_{n}(z) = e^{-z^2}.$Consequently, according to Lebesgue's dominated convergence theorem
\begin{equation*}
\lim_{n\to \infty}I_{n} = \int_{0}^{\infty}e^{-z^2}\,\mathrm{d}z =\dfrac{\sqrt{\pi}}{2}.
\end{equation*}**Remark.** This is an alternative answer where we use the beta function and the gamma function. From https://en.wikipedia.org/wiki/Beta_functionwe get
\begin{equation*}
\sqrt{n}\int_{0}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x = \dfrac{\sqrt{n}\,\Gamma(n-\frac{1}{2})}{\Gamma(n)}\cdot\dfrac{\sqrt{\pi}}{2}\to \dfrac{\sqrt{\pi}}{2}, \mbox{ as } n\to \infty
\end{equation*}
where we find the limit here https://en.wikipedia.org/wiki/Gamma_functionSince
\begin{equation*}
0 \le \sqrt{n}\int_{\pi/4}^{\pi/2}\cos^{2n-2}(x)\,\mathrm{d}x \le \sqrt{n}\,2^{1-n}\cdot\dfrac{\pi}{4} \to 0, \mbox{ as } n\to \infty
\end{equation*}[/Sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top