MHB What is the maximum yield for a steady state solution?

AI Thread Summary
The discussion revolves around determining the maximum yield for a steady state solution in a differential equation context. A steady state solution is defined as a constant solution where the derivative is zero, leading to the equations u(1-u)(1+u) - Eu = 0. The steady state solutions are identified as u*(E) = 0 and u*(E) = sqrt(1 - E). The yield is defined as Y = Eu*(E), which results in Y = E sqrt(1 - E) for the non-zero solution, and to find its maximum, the derivative is set to zero, yielding E* = 2/3 as the point of maximum yield. The maximum yield occurs at E = 2/3, confirming the solution's validity.
mt91
Messages
13
Reaction score
0
1596323463544.png

I've got a question here which I'm really unsure what the wording is asking me to do, I've calculated (5), so worked out the steady states. However question 6 has really thrown me off with it's wording, any help would be appreciated.
 
Mathematics news on Phys.org
A "steady state" solution to a differential equation is a constant solution. Since the derivatives of a constant are 0, for a "steady state" solution du/dt= 0. For this problem that means u(1- u)(1+ u)- Eu= 0. Factoring out "u", u[(1- u)(1+u)- E]= u[1- u^2- E]= 0. Either u= 0 or u^2= 1- E so the "steady state" solutions are u*(E)= 0 and u*(E)= sqr{1- E}. Is that what you got for (5)?

Problem (6) asks about the "yield" which is defined as Y= Eu*(E) where u* is a "steady state solution". Since the steady state solutions are u*(E)= 0 and u*(E)= sqrt(1- E), either Y= E(0)= 0 or Y= E sqrt(1- E)= sqr(E^2- E^3). The first is identically equal to 0 so cannot be maximized. To find the maximum of the second, set the derivative equal to 0.

Y= sqrt(E^2- E^3)= (E^2- E^3)^(1/2). Y'= (1/2)(E^2- E^3)^(-1/2)(2E- 3E^2)= 0. That is equivalent to 3E^2- 2E= E(3E- 2)= 0 so E= 0 or E= 2/3. Again, E= 0 cannot give a maximum (it gives a minimum) so E*= 2/3.
 
A "steady state" solution to a differential equation is a constant solution. Since the derivatives of a constant are 0, for a "steady state" solution $\frac{du}{dt}= 0$. For this problem that means $u(1- u)(1+ u)- Eu= 0$. Factoring out "u", $u[(1- u)(1+u)- E]= u[1- u^2- E]= 0$. Either $u= 0$ or $u^2= 1- E$ so the "steady state" solutions are $u^*(E)= 0$ and $u^*(E)= \sqrt{1- E}$. Is that what you got for (5)?

Problem (6) asks about the "yield" which is defined as $Y= Eu^*(E)$ where u* is a "steady state solution". Since the steady state solutions are $u^*(E)= 0$ and $u^*(E)= \sqrt(1- E)$, either $Y= E(0)= 0$ or $Y= E \sqrt(1- E)= \sqrt(E^2- E^3)$. The first is identically equal to 0 so cannot be maximized. To find the maximum of the second, set the derivative equal to 0.

$Y= \sqrt(E^2- E^3)= (E^2- E^3)^{1/2}$. $Y'= (1/2)(E^2- E^3)^(-1/2)(2E- 3E^2)= 0$. That is equivalent to $3E^2- 2E= E(3E- 2)= 0$ so $E= 0$ or $E= 2/3$. Again, $E= 0$ cannot give a maximum (it gives a minimum) so $E^*= 2/3$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top