MHB What is the maximum yield for a steady state solution?

AI Thread Summary
The discussion revolves around determining the maximum yield for a steady state solution in a differential equation context. A steady state solution is defined as a constant solution where the derivative is zero, leading to the equations u(1-u)(1+u) - Eu = 0. The steady state solutions are identified as u*(E) = 0 and u*(E) = sqrt(1 - E). The yield is defined as Y = Eu*(E), which results in Y = E sqrt(1 - E) for the non-zero solution, and to find its maximum, the derivative is set to zero, yielding E* = 2/3 as the point of maximum yield. The maximum yield occurs at E = 2/3, confirming the solution's validity.
mt91
Messages
13
Reaction score
0
1596323463544.png

I've got a question here which I'm really unsure what the wording is asking me to do, I've calculated (5), so worked out the steady states. However question 6 has really thrown me off with it's wording, any help would be appreciated.
 
Mathematics news on Phys.org
A "steady state" solution to a differential equation is a constant solution. Since the derivatives of a constant are 0, for a "steady state" solution du/dt= 0. For this problem that means u(1- u)(1+ u)- Eu= 0. Factoring out "u", u[(1- u)(1+u)- E]= u[1- u^2- E]= 0. Either u= 0 or u^2= 1- E so the "steady state" solutions are u*(E)= 0 and u*(E)= sqr{1- E}. Is that what you got for (5)?

Problem (6) asks about the "yield" which is defined as Y= Eu*(E) where u* is a "steady state solution". Since the steady state solutions are u*(E)= 0 and u*(E)= sqrt(1- E), either Y= E(0)= 0 or Y= E sqrt(1- E)= sqr(E^2- E^3). The first is identically equal to 0 so cannot be maximized. To find the maximum of the second, set the derivative equal to 0.

Y= sqrt(E^2- E^3)= (E^2- E^3)^(1/2). Y'= (1/2)(E^2- E^3)^(-1/2)(2E- 3E^2)= 0. That is equivalent to 3E^2- 2E= E(3E- 2)= 0 so E= 0 or E= 2/3. Again, E= 0 cannot give a maximum (it gives a minimum) so E*= 2/3.
 
A "steady state" solution to a differential equation is a constant solution. Since the derivatives of a constant are 0, for a "steady state" solution $\frac{du}{dt}= 0$. For this problem that means $u(1- u)(1+ u)- Eu= 0$. Factoring out "u", $u[(1- u)(1+u)- E]= u[1- u^2- E]= 0$. Either $u= 0$ or $u^2= 1- E$ so the "steady state" solutions are $u^*(E)= 0$ and $u^*(E)= \sqrt{1- E}$. Is that what you got for (5)?

Problem (6) asks about the "yield" which is defined as $Y= Eu^*(E)$ where u* is a "steady state solution". Since the steady state solutions are $u^*(E)= 0$ and $u^*(E)= \sqrt(1- E)$, either $Y= E(0)= 0$ or $Y= E \sqrt(1- E)= \sqrt(E^2- E^3)$. The first is identically equal to 0 so cannot be maximized. To find the maximum of the second, set the derivative equal to 0.

$Y= \sqrt(E^2- E^3)= (E^2- E^3)^{1/2}$. $Y'= (1/2)(E^2- E^3)^(-1/2)(2E- 3E^2)= 0$. That is equivalent to $3E^2- 2E= E(3E- 2)= 0$ so $E= 0$ or $E= 2/3$. Again, $E= 0$ cannot give a maximum (it gives a minimum) so $E^*= 2/3$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top