- #1

Chuck88

- 37

- 0

[tex]

U(\mathbf{r} ,t ) = A_{0} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)}

[/tex]

and we could separate the expression above into:

[tex]

U(\mathbf{r} ,t = \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi) + i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)

[/tex]

Then what is the practical meaning of the imaginary part, ##i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)##?