- #1
Chuck88
- 37
- 0
The plane wave function sometimes could be represented as:
[tex]
U(\mathbf{r} ,t ) = A_{0} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)}
[/tex]
and we could separate the expression above into:
[tex]
U(\mathbf{r} ,t = \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi) + i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)
[/tex]
Then what is the practical meaning of the imaginary part, ##i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)##?
[tex]
U(\mathbf{r} ,t ) = A_{0} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)}
[/tex]
and we could separate the expression above into:
[tex]
U(\mathbf{r} ,t = \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi) + i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)
[/tex]
Then what is the practical meaning of the imaginary part, ##i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)##?