Austin0
- 1,160
- 1
Austin0 said:Since none of the above seem convincing I am thinking I must be missing some obvious fundamental factor ?. Any insights welcome
Nugatory said:Consider a single molecule, initially moving downwards. It hits the bottom of the box and rebounds upwards - the scale is forced down and registers an increase in weight. But once the molecule starts upwards again, the scale also rebounds, accelerating the box upwards. Thus, at the position where the weight of the box and the upwards force of the scale would be exactly balanced at equilibrium, the box is moving upwards and the scale reads a bit low. And eventually the upwards-moving rebounding molecule hits the top of the box and rebounds again downwards, nudging the box up a bit more, further reducing the reading the scale reading. But now the molecule is heading back down, and gravity is pulling the box back down, so the cycle repeats.
Compute the average over time of the upwards fluctuations and the downwards fluctuations, and it will come out to mg, where m is the mass of the single molecule.
Consider a large number of molecules, all going through this cycle at their own rate with a random statistical distribution of when they're going up and when they're going down, and you'll get an average of Mg where M is the total mass of all the molecules.
As you can see in my OP I had it right.
Somehow I became focused on the instantaneous state of the system and like Zeno's arrow I got stuck and could not see the obvious.
Your qualitative view set me straight where looking at it over time it is glaringly obvious.
It was just such a view of fundamental process I was looking for but escaped me
Thanks