MHB What is the method for integrating 1/(1+x^n) using roots of polynomials?

Click For Summary
The discussion focuses on integrating the function 1/(1+x^n) using the roots of the polynomial 1+x^n. It highlights that the roots are given by x_k = e^(i(2k+1)π/n) for k = 0, 1, ..., n-1. The expression 1/(1+x^n) can be rewritten as a sum of partial fractions involving these roots. By integrating term by term, the result is expressed as a sum of logarithmic terms plus a constant. This method provides a systematic approach to tackle integrals of the form 1/(1+x^n).
juantheron
Messages
243
Reaction score
1
$(1)\displaystyle \;\; \int\frac{1}{1+x^6}dx$

$(2)\displaystyle \;\; \int\frac{1}{1+x^8}dx$
 
Physics news on Phys.org
jacks said:
$(1)\displaystyle \;\; \int\frac{1}{1+x^6}dx$

$(2)\displaystyle \;\; \int\frac{1}{1+x^8}dx$

May be is useful to consider the general case...

$\displaystyle \int \frac{dx}{1+x^{n}}$ (1)

The root of the polinomial $\displaystyle 1+x^{n}$ are $\displaystyle x_{k}= e^{i\ \frac{2k+1}{n}\ \pi}\ ,\ k= 0.1,...,n-1$ so that is...

$\displaystyle \frac{1}{1+x^{n}} = \sum_{k=0}^{n-1} \frac{r_{k}}{x-x_{k}}$ (2)

... where...

$\displaystyle r_{k}= \lim_{x \rightarrow x_{k}} \frac{x-x_{k}}{1+x^{n}}$ (3)

Now You can integrate (2) 'term by term' obtaining... $\displaystyle \int \frac{dx}{1+x^{n}}= \sum_{k=0}^{n-1} r_{k}\ \ln (x-x_{k}) + c $ (4)

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
3K
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
3K