MHB What is the number of blue balls in the second urn?

Houdini1
Messages
5
Reaction score
0
Question:
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the same color is .44. Calculate the number of blue balls in the second urn.

My attempt
I don't know the best notation to use for this situation. I am going to try [math]P(R_1)[/math] as the probability of drawing a red ball from the first urn. So we have [math]P(R_1)=.4 \text{ and } P(B_1)=.6[/math]. To express the probability of both balls being a single color it seems there are two cases to consider which we should add: [math]P(R_1 \cap R_2)+P(B_1 \cap B_2)[/math]. Am I correct in thinking that for mutually exclusive events that's the same as [math]P(R_1 \cdot R_2)+P(B_1 \cdot B_2)[/math]?

I know the basic ways to manipulate these using DeMorgan's Laws but I'm missing the first step or have set up the problem entirely incorrectly. I have the solution key but I don't want the full solution yet.
 
Mathematics news on Phys.org
Houdini said:
Question:
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the same color is .44. Calculate the number of blue balls in the second urn.
I would solve the following:
\frac{4}{10}\frac{16}{16+x}+\frac{6}{10}\frac{x}{16+x}=\frac{44}{100}.
 
Makes perfect sense. I've been trying to use all of these set rules that I missed it. So x=4 and plugging that in confirms.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top