MHB What is the number of blue balls in the second urn?

AI Thread Summary
The problem involves two urns: the first contains 4 red and 6 blue balls, while the second has 16 red balls and an unknown number of blue balls. The probability that both balls drawn from each urn are of the same color is given as 0.44. The correct approach to solve this involves calculating the probabilities for both colors and setting up the equation: (4/10)(16/(16+x)) + (6/10)(x/(16+x)) = 0.44. Solving this equation reveals that the number of blue balls in the second urn is 4.
Houdini1
Messages
5
Reaction score
0
Question:
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the same color is .44. Calculate the number of blue balls in the second urn.

My attempt
I don't know the best notation to use for this situation. I am going to try [math]P(R_1)[/math] as the probability of drawing a red ball from the first urn. So we have [math]P(R_1)=.4 \text{ and } P(B_1)=.6[/math]. To express the probability of both balls being a single color it seems there are two cases to consider which we should add: [math]P(R_1 \cap R_2)+P(B_1 \cap B_2)[/math]. Am I correct in thinking that for mutually exclusive events that's the same as [math]P(R_1 \cdot R_2)+P(B_1 \cdot B_2)[/math]?

I know the basic ways to manipulate these using DeMorgan's Laws but I'm missing the first step or have set up the problem entirely incorrectly. I have the solution key but I don't want the full solution yet.
 
Mathematics news on Phys.org
Houdini said:
Question:
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the same color is .44. Calculate the number of blue balls in the second urn.
I would solve the following:
\frac{4}{10}\frac{16}{16+x}+\frac{6}{10}\frac{x}{16+x}=\frac{44}{100}.
 
Makes perfect sense. I've been trying to use all of these set rules that I missed it. So x=4 and plugging that in confirms.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top