What Is the Probability Distribution for Drawing Spades Without Replacement?

Click For Summary

Discussion Overview

The discussion revolves around determining the probability distribution for drawing spades from a deck of cards without replacement. Participants explore various approaches to calculating the probabilities associated with drawing 0, 1, 2, or 3 spades in three successive draws.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a method for calculating the probabilities of drawing spades, detailing the conditional probabilities for each draw.
  • Another participant questions whether the inquiry is about the probability of drawing three spades or a general distribution for the three draws, suggesting that the final result should involve multiplication rather than summation.
  • A different participant proposes that the hyper-geometric distribution may be applicable to this scenario.
  • One participant interprets the question as asking for the probabilities of drawing 0, 1, 2, or 3 spades and provides calculations for these probabilities, including a check that they sum to 1.
  • Several participants express confusion regarding the numerator values in the probability calculations, seeking clarification on the reasoning behind them.
  • A participant corrects their earlier statement about the numerator, explaining that it should reflect the choices for non-spades and the spade in the context of drawing one spade.

Areas of Agreement / Disagreement

Participants express differing interpretations of the original question and the appropriate method for calculating the probabilities. There is no consensus on a single approach or solution, and multiple viewpoints remain active in the discussion.

Contextual Notes

Some participants note confusion regarding specific calculations and the assumptions underlying the probability distributions, particularly in relation to the combinations of spades and non-spades drawn.

Roohul Amin
Messages
5
Reaction score
0
Dear All sorry for repeated post;
There is a problem
Problem: Three cards are drawn in succession from a deck without replacement. find the probability distribution for the number of spades.
I have come with this solution.
Let S1: appearance of spade on first draw S2: appearance of spade on 2nd draw S3: appearance of spade on 3rd draw
S01: No spade on 1st draw S02: No spade on 2nd draw
P(S1)=13/52
P(S2)=P(S2/S1)+P(S2/S0)=12/51+13/51
P(S3)=P(S3/S01*S02)+P(S3/S1*S02)+P(S3/S1*S2)=13/50+12/50+11/50

Need your opinion Please!
 
Physics news on Phys.org
Hi there,

So a probability distribution is a function of some kind of input parameter(s). Are you asking what is the probability of drawing three spades or trying to generalize the distribution in terms of the three draws?

In either case the final result would be a multiplication, not a sum. I think you are in the right direction but some clarification on the question would be helpful.

If you want an exhaustive list of possible outcomes, the event is spade/no spade, so the total number of outcomes is $2^3=8$.
 
Thanks for your reply Jamson: it seems the hyper-geometric distribution fit well this situation, what do you think?
 
Roohul Amin said:
Dear All sorry for repeated post;
There is a problem
Problem: Three cards are drawn in succession from a deck without replacement. find the probability distribution for the number of spades.
I have come with this solution.
Let S1: appearance of spade on first draw S2: appearance of spade on 2nd draw S3: appearance of spade on 3rd draw
S01: No spade on 1st draw S02: No spade on 2nd draw
P(S1)=13/52
P(S2)=P(S2/S1)+P(S2/S0)=12/51+13/51
P(S3)=P(S3/S01*S02)+P(S3/S1*S02)+P(S3/S1*S2)=13/50+12/50+11/50

Need your opinion Please!
I am not entirely sure that I understand the question. But I think that it is asking for the probabilities for drawing 0, 1, 2 or 3 spades.

Let $P(n)$ denote the probability of drawing $n$ spades. Then $P(0) = \dfrac{39 \cdot 38 \cdot 37}{52 \cdot 51 \cdot 50} \approx 0.4135$.

For $P(1)$ we have to draw one spade and two non-spades. There are three possibilities, since the one spade could be either the first, the second or the third card drawn. So $P(1) = \dfrac{3 \cdot 39 \cdot 38 \cdot 13}{52 \cdot 51 \cdot 50} \approx 0.4359.$

In a similar way, you can calculate $P(2)$ and $P(3)$.

If I am interpreting the question correctly, you answer should be the set of four probabilities $P(0),\ldots,P(3)$. As a check, you should verify that your four probabilities add up to $1$.
 
Last edited:
in the denominator the values are clearly 52C3. But the values in numerator i.e 3.52.52.39 are making some confusion to me, would you pleas give details. Thanks
 
Roohul Amin said:
in the denominator the values are clearly 52C3. But the values in numerator i.e 3.52.52.39 are making some confusion to me, would you pleas give details. Thanks
Sorry, my mistake. I should have written 3.39.38.13 there (I have now corrected it). The idea is that if you want just one of the three cards to be a spade, then you have 39 choices for the first non-spade, 38 for the second non-spade, and 13 for the spade. The 3 (as I mentioned in my previous comment) comes from the fact that the spade could be either the first, the second, or the third card to be chosen.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
7K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K