MHB What is the probability of a customer only insuring one non-sports car?

AI Thread Summary
The discussion centers on calculating the probability that a customer insures exactly one non-sports car. An insurance company has data indicating that 30% of customers insure one car, with 20% insuring a sports car. Among those with multiple cars, 15% have a sports car, leading to the conclusion that 205 out of 1000 customers insure one car that is not a sports car. The probability is therefore calculated as 205/1000, resulting in 0.205 or 20.5%. This calculation aligns with the answer key provided.
Jason123
Messages
3
Reaction score
0
Need help with a probability problem. I have the answer from the answer key, I just don't know how to figure it out.An insurance company examines its pool of auto insurance customers and gathers the following information:1) All customers insure at least one car.

2) 70% of the customers insure more than one car.

3) 20% of customers insure a sports car.

4) Of those customers who insure more than one car, 15% insure a sports car.
Calculate the probability that a randomly selected customer insures exactly one car and that car is not a sports car.
 
Mathematics news on Phys.org
Hello Jason123 and welcome to MHB! :D

Any thoughts on where to begin?

Also, we ask that users do not post duplicate topics, thanks. I've deleted your other thread.
 
I know I need to use the formula, pr(AnB)/Pr(B). For this problem I believe that pr(AnB) = the probability that someone has only one car and the car is not a sports car. And then divide that by the probability that someone has only one car. but I can't seem to get those numbers. Answer key says its .205.
 
Here's how I would do this problem (I'm not big on memorizing formulas):
"An insurance company examines its pool of auto insurance customers and gathers the following information:"
Imagine 1000 customers.

"1) All customers insure at least one car.

2) 70% of the customers insure more than one car."
So 700 insure more than one car, 300 insure one car.

"3) 20% of customers insure a sports car."
So 200 insure a sports car.

"4) Of those customers who insure more than one car, 15% insure a sports car."
Of the 700 customers who insure more than one car, .15(700)= 105 insure a sports car. Since 200 customers insured a sports car, that means there are 200- 105= 95 customers who insure only one car and that is a sports car. Since 300 customers insure one car, 300- 95= 205 customers insure one car and that car is not a sports car.

"Calculate the probability that a randomly selected customer insures exactly one car and that car is not a sports car."
That's easy now. Out of 1000 customers, 205 of them insure one car which is not a sports car. The probability is 205/1000= 0.205 or 20.5%.
 
Consider the following Venn diagram:

View attachment 6082

We must have:

$$x+0.7+0.095=1$$

$$x=0.205$$
 

Attachments

  • insurancevenn.png
    insurancevenn.png
    4.5 KB · Views: 130
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top