Eclair_de_XII
- 1,082
- 91
So is it ##\frac{p}{q}(\frac{1-q^{s-1}}{p})=\frac{1-q^{s-1}}{q}##, then...?
Eclair_de_XII said:So is it ##\frac{p}{q}(\frac{1-q^{s-1}}{p})=\frac{1-q^{s-1}}{q}##, then...?
Eclair_de_XII said:This is how I'm getting it: ##\sum_{k=1}^{s-1} pq^{k-1}=\frac{p}{q}\sum_{k=1}^{s-1} q^{k}=\frac{p}{q}(\frac{1-q^{s-1}}{1-q})=\frac{p}{q}(\frac{1-q^{s-1}}{p})##.
Eclair_de_XII said:I don't know what you mean by telescoping process. Do you mean that the finite sum is a telescoping series?