What is the probability of selecting a white ball from a box?

Click For Summary
SUMMARY

The discussion centers on calculating the probability of selecting a white ball from a box containing 10 balls, of which 6 are black and 4 are white. Participants initially miscalculated the probability by not accounting for the various combinations of colors among the first three balls drawn. The correct approach involves considering all possible outcomes for the first three balls and summing their probabilities, leading to a final probability of 0.3905 for the fourth ball being white.

PREREQUISITES
  • Understanding of basic probability concepts
  • Familiarity with combinatorial reasoning
  • Knowledge of conditional probability
  • Ability to perform calculations involving fractions
NEXT STEPS
  • Study combinatorial probability techniques
  • Learn about conditional probability and its applications
  • Explore the concept of mutually exclusive events in probability
  • Practice problems involving probability with varying conditions
USEFUL FOR

Students studying probability theory, educators teaching statistics, and anyone interested in enhancing their problem-solving skills in mathematical contexts.

duki
Messages
264
Reaction score
0

Homework Statement



A box has 10 bass, 6 are black and 4 are white. Three balls are removed from the box, color unknown. Find the probability that a fourth ball removed will be white.

Homework Equations



The Attempt at a Solution



I got:
\frac{4}{10} * \frac{3}{9} * \frac{2}{8} * \frac{1}{7} = 0.00476
 
Physics news on Phys.org
duki said:

The Attempt at a Solution



I got 0.00476?
How?
 
updated
 
Ah, I see. You used 4/10, 3/9, and 2/8 as the probability for the first three balls - but those are the probabilities of picking all white balls. What if the first ball picked is black? Or if the second ball picked is black? Or if all of the first three are black? You haven't accounted for any of those possibilities.

You should first figure out how many different possibilities there are for the colors of the first 3 balls.

Then, once you've done that, for each of those possibilities, calculate the probability that the first three balls are those colors and then the fourth ball is white.

Finally, since those are mutually exclusive possibilities (the first three balls are either WWW, WWB, WBW, ... but only one of those), you can add up the probabilities for all the cases.
 
Ok, I got 0.3905?
 
duki said:

Homework Statement



A box has 10 bass, 6 are black and 4 are white. Three balls are removed from the box, color unknown. Find the probability that a fourth ball removed will be white.

As phrased this is a trick question, I think; a very good one.

As phrased, it appears that you are given no information at all about the colour of the balls that are removed, right?

Think about this. Suppose you take two balls out of the box, in the dark, and put them in two paper bags. Now switch on the light, and look at your bags.

What is the probability that the ball in the first bag is white?
What is the probability that the ball in the second bag is white?

Cheers -- sylas
 
duki said:
Ok, I got 0.3905?
That's not quite what I got. What did you add up? (Remember you have to show your work for as long as you continue to want help!)

I think sylas has in mind a different way of reasoning, trickier but shorter... I didn't mention that at first because I figured there was more educational value in doing it the straightforward way. :wink:
 
Without showing my work, I got 0.2.
Not sure if I'm right though.
 
zgozvrm said:
Without showing my work, I got 0.2.
Not sure if I'm right though.

I got twice as much as that...
 
  • #10
sylas said:
I got twice as much as that...

After re-calculating, so did I!
 

Similar threads

Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
25
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K