What is the Proof that 2 Equals 1 Using Infinite Series?

  • Context: Graduate 
  • Thread starter Thread starter gnome
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
SUMMARY

The forum discussion centers on a flawed mathematical "proof" claiming that 2 equals 1 through the manipulation of infinite series and derivatives. The proof begins with the equation x² = x * (1 + 1 + ... + 1) and incorrectly applies derivatives, leading to the erroneous conclusion that 2 = 1. Participants identify the critical error in assuming the validity of taking derivatives on both sides without ensuring the continuity of the function involved, particularly when x is not a nonnegative integer. The discussion highlights the importance of defining functions properly before applying calculus operations.

PREREQUISITES
  • Understanding of basic algebraic manipulation
  • Familiarity with derivatives and their definitions
  • Knowledge of infinite series and summation notation
  • Concept of continuity in mathematical functions
NEXT STEPS
  • Study the properties of derivatives and their application to continuous functions
  • Learn about infinite series and convergence criteria
  • Explore the concept of continuity and differentiability in calculus
  • Investigate common fallacies in mathematical proofs and how to identify them
USEFUL FOR

Mathematicians, students of calculus, educators, and anyone interested in understanding the nuances of mathematical proofs and the importance of rigorous definitions in mathematics.

  • #31
I don't think we are entitled to invent our own meaning for a summation.

Summation has a very precise meaning which you can look up. My understanding of it is:
∑k=1m f(k) means you must specify some function of k (which may be just k itself, or k2, or sin(k), etc), and you evaluate that f(k) at each of the integer values from k=1 to k=m (and hence you must specify what m is) and then add up all of those values of f(k).

That doesn't appear to be what you are doing.
 
Physics news on Phys.org
  • #32
Well, the function after the sum does not necessarily have to be a function of k (the variable that the sum is changing). Examples include :
∑(from k=1 to 3)1
which equals :
1+1+1=3
Or even, suppose that in your example, f(k) was a constant function, what will you have ? (well, you will have sth like what is above).
Mainly, if the function after the sum is not a function of the changing variable (k in our case), the value of the sum becomes as follows :
∑(from k=n to m)f(x1)=(m-n+1)f(x1)

And secondly, the value of m in my sum is specified, it has the value of [ x ].

Anything else
 
  • #33
Even a joke can have more than one use.

More fun!

The rightside function is indeed an infinite series of functions. Just look at the known values:

f(0) = 0 + 0 + 0 + 0 + ...
f(1) = 1 + 0 + 0 + 0 + ...
f(2) = 2 + 2 + 0 + 0 + ...
f(3) = 3 + 3 + 3 + 0 + ...
f(4) = 4 + 4 + 4 + 4 + ...

and so on.

So, how does one write this function in a closed form as an infinite series (paying attention to the values between those positive integer argument values)?

Enter the positive unit stepup function Sn(x). It is equal to 0 when x < n and it is equal to 1 when n<=x.

-Sn(x) is equal to 0 when x < n and it is equal to -1 when n<=x.

1-Sn(x) is equal to 1 when x < n and it is equal to 0 when n<=x. So, 1-Sn(x) is a positive unit stepdown function.

Check this out.
Sn(x) (1-Sn+1(x)) is equal to 0(0) = 0 when x < n; it is equal to 1(1) = 1 when n<=x<n+1;it is equal to 1(0) = 0 when n+1<=x.
This is a positive unit impulse function between two integer values.

Using these, one can construct the terms of the infinite series for all integer argument values, including also the negative ones:

f(-0) = 0 + 0 + 0 + 0 + ...
f(-1) = 1 + 0 + 0 + 0 + ...
f(-2) = 2 + 2 + 0 + 0 + ...
f(-3) = 3 + 3 + 3 + 0 + ...
f(-4) = 4 + 4 + 4 + 4 + ...

and so on.

Here is my expression for the infinite series function:

f(x) = &Sigma;n=0&infin; {n(1-S-n(x) + Sn(x)) + (x2-n2)((1-S-n(x))(S-n-1(x))+ ((Sn(x))(1-Sn+1(x))}

I assert that this series will reproduce the values at integer arguments, both negative and positive, just like the above examples.
Alas, the infinite series converges pointwise, but not uniformly. So differentiation term by term isn't justified.
Finally, despite the hopeless appearance of discontinuity and undifferentiability at those integer argument values, I assert that f(x) = x2 for all real x.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K