B What is the relationship between force and distance in planetary motion?

AI Thread Summary
The discussion highlights the relationship between force and distance in planetary motion, emphasizing how similar triangles help establish this relationship. The horizontal force component, Fx, is shown to be negative when x is positive, indicating the attractive nature of gravitational force. This negative sign ensures that the force direction aligns with the physical behavior of the system, regardless of the position of the planet. Participants clarify that while similar triangles relate magnitudes without signs, the negative sign is necessary for accurate physical representation. The conversation concludes with a comparison to Hooke's Law, reinforcing the idea that these principles govern physical interactions.
rudransh verma
Gold Member
Messages
1,067
Reaction score
96
https://www.feynmanlectures.caltech.edu/I_09.html
9-7
"From this figure we see that the horizontal component of the force is related to the complete force in the same manner as the horizontal distance x is to the complete hypotenuse r, because the two triangles are similar. Also, if x is positive, Fx is negative. That is, Fx/|F|=−x/r, or Fx= −|F|x/r= −GMmx/r3. Now we use the dynamical law to find that this force component is equal to the mass of the planet times the rate of change of its velocity in the x-direction".

I don't understand when the ratio of corresponding magnitudes are equal for similar triangles why is it taking -ve sign with x?
 
Physics news on Phys.org
rudransh verma said:
I don't understand when the ratio of corresponding magnitudes are equal for similar triangles why is it taking -ve sign with x?
Look at the drawing. The force Fx points to the left (is -ve) whilst x is +ve. Now imagine the planet being on the other side of the y-axis at the mirror-image point. In this case Fx points to the right (is +ve) whilst x is -ve because it on the negative side. The -ve sign in front of x/r makes sure that the gravitational force is attractive and points in the right direction regardless of whether x is +ve or -ve.
 
kuruman said:
Look at the drawing. The force Fx points to the left (is -ve) whilst x is +ve. Now imagine the planet being on the other side of the y-axis at the mirror-image point. In this case Fx points to the right (is +ve) whilst x is -ve because it on the negative side. The -ve sign in front of x/r makes sure that the gravitational force is attractive and points in the right direction regardless of whether x is +ve or -ve.
But mathematically speaking we cannot put -ve sign. We are just using the property of similar triangles. One ratio is not equal to -ve of another ratio.
 
Last edited:
rudransh verma said:
But mathematically speaking we cannot put -ve sign. We are just using the property of similar triangles. One ratio is not equal to -ve of another ratio.
You asked and I replied. Similar triangles can be used to establish relations between magnitudes without reference to signs. This doesn't mean that we are prohibited to put a -ve sign where it belongs. Here, we are describing a physical situation using the language mathematics. Therefore, we are perfectly entitled to put -ve signs where they are needed in order to match the mathematical description to the observed behavior of the system.
 
kuruman said:
The -ve sign in front of x/r makes sure that the gravitational force is attractive and points in the right direction regardless of whether x is +ve or -ve.
kuruman said:
we are describing a physical situation using the language mathematics.
Okay! Thanks.
Like hookes law it is also a law.
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top