MHB What is the relationship between the Mellin transform and the sine function?

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Sin Transform
Click For Summary
SUMMARY

The discussion centers on the relationship between the Mellin transform and the sine function, specifically analyzing the Mellin transform defined as $$\mathcal{MT}\{f(t)\}=\int^\infty_0 t^{z-1} f(t) dt$$ for $$z\in \mathbb{C}$$. The vertical strip for the Mellin transform of sine, $$\mathcal{MT}\{ \sin(t)\}$$, is explored, along with exercises involving the analytic representation of the integral $$\int^\infty_0 t^{z-1} \sin(t) dt$$ and the application of the inverse Mellin transform. The discussion highlights the use of contour integration to extend results related to the sine function and the gamma function, emphasizing the dominance of the gamma function in complex analysis.

PREREQUISITES
  • Understanding of the Mellin transform and its properties
  • Familiarity with complex analysis, particularly contour integration
  • Knowledge of the gamma function and its asymptotic behavior
  • Experience with analytic functions and their representations
NEXT STEPS
  • Study the properties of the Mellin transform in detail
  • Learn about contour integration techniques in complex analysis
  • Explore the asymptotic behavior of the gamma function
  • Investigate the inverse Mellin transform and its applications
USEFUL FOR

Mathematicians, physicists, and students of complex analysis seeking to deepen their understanding of the Mellin transform and its applications to the sine function and related integrals.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Mellin transform of sine

Define the Mellin transform as

$$\mathcal{MT}\{f(t)\}=\int^\infty_0 t^{z-1} f(t) dt$$ where $$z\in \mathbb{C}$$​
If the transform exists , it is analytic in some vertical strip $$a<\mathrm{Re}(z)<b $$ in the complex plane

Find the vertical strip of $$\mathcal{MT}\{ \sin(t)\}$$

Additional exercises

1-Find the an analytic function representing

$$\int^\infty_0 t^{z-1} \sin(t) dt$$

2-Use the inverse Mellin transform by integrating along a line (Bromwich integral )

to prove that

$$\sin(t) = \frac{1}{2 \pi i }\int^{\gamma+i\infty}_{\gamma-i\infty}t^{-z}\mathcal{MT}\{ \sin(t)\} \, dt $$
 
Last edited:
Mathematics news on Phys.org
$ \displaystyle \int_{0}^{\infty} t^{z-1} \sin t \ dt = \int_{0}^{1} t^{z-1} \sin t \ dt + \int_{1}^{\infty} t^{z-1} \sin t \ dt $Since $\sin t $ behaves like $t$ near $t=0$, the first integral converges if $\text{Re}(z) > -1 $.

And by Dirichlet's convergence test, the second integral converges if $ \text{Re}(z) < 1$.So $ \displaystyle \int_{0}^{\infty} t^{z-1} \sin t \ dt$ converges if $-1 < \text{Re}(s) < 1$.I'm going to integrate by parts first so that when I switch the order of integration it's justified by Tonelli's theorem.$$ \int_{0}^{\infty} \frac{\sin t}{t^{1-z}} \ dt = \frac{1- \cos t}{t^{1-z}} \Big|_{0}^{\infty} + (1-z) \int_{0}^{\infty} \frac{1- \cos t}{t^{2-z}} \ dt = (1-z) \int_{0}^{\infty} \frac{1- \cos t}{t^{2-z}} \ dt $$

$$ = \frac{1-z}{\Gamma(2-z)} \int_{0}^{\infty} \int_{0}^{\infty} (1 - \cos t) t^{1-z} e^{-tx} \ dx \ dt = \frac{1}{\Gamma(1-z)} \int_{0}^{\infty} \int_{0}^{\infty} (1 - \cos t) t^{1-z} e^{-xt} \ dt \ dx $$

$$= \frac{1}{\Gamma(1-z)} \int_{0}^{\infty} x^{1-z} \left( \frac{1}{x} - \frac{x}{1+x^{2}} \right) \ dx = \frac{1}{\Gamma(1-z)} \int_{0}^{\infty} \frac{x^{-z}}{1+x^{2}} \ dx$$

$$= \frac{1}{\Gamma(1-z)} \int_{0}^{\infty} \frac{x^{(1-z)-1}}{1+x^{2}} \ dx = \frac{1}{\Gamma(1-z)} \frac{\pi}{2} \csc \left( \frac{\pi (1-z)}{2} \right)$$

$$ = \frac{1}{\Gamma (1-z)} \frac{\pi}{2} \sec \left( \frac{\pi z}{2} \right) = \frac{\Gamma (z)}{\Gamma(z) \Gamma(1-z)} \frac{\pi}{2} \sec \left( \frac{\pi z}{2} \right)$$

$$= \frac{\Gamma(z)}{\frac{\pi}{\sin \pi z}} \frac{\pi}{2} \frac{1}{\cos \left(\frac{\pi z}{2}\right)} = \Gamma (z) \frac{\sin \pi z}{2 \cos \left( \frac{\pi z}{2} \right)}$$

$$ = \Gamma(z) \frac{2 \sin \left(\frac{\pi z}{2} \right) \cos \left(\frac{\pi z}{2} \right)}{2 \cos \left(\frac{\pi z}{2} \right)} = \Gamma(z) \sin \left( \frac{\pi z}{2} \right)$$
 
Hey RV, Good solution. The third parts isn't that difficult.

Another way to solve the integral is using the formula
$$\int^\infty_0 t^{z-1} e^{-st} \, dt =\frac{\Gamma(z)}{s^z}$$

So we have

$$\int^\infty_0 t^{z-1} \sin(t) \, dt = \mathcal{Im} \int^\infty_0 t^{z-1} e^{it} \, dt =\mathcal{Im} \frac{\Gamma(z)}{i^z} = \mathcal{Im} \frac{\Gamma(z)}{e^{z \log(i)}} =\Gamma(z) \mathcal{Im}\left( e^{-\frac{\pi}{2} i z } \right)=\Gamma(z)\sin\left( \frac{\pi}{2} \, z \right)$$

A third way is by contour integration.
 
The justification for what you did, that is, assuming that formula is valid when $s$ is purely imaginary, comes from contour integration. So contour integration is really the same approach.
 
Well, I have been thinking about that for a long time. It seemed we can extend that result when $$\mathrm{Re}(s)=0 $$ and $$\mathrm{Im}(s) \neq 0$$ . The easiest way might be by contours as you said. I failed to find another analytic approach to prove the extended result. But generally it seems if

$$\int^\infty_0 e^{-st} \, t^{z-1} \, dt =\frac{\Gamma(z)}{s^z}$$

is valid for $$\mathrm{Re}(s) >0$$ or $$\mathrm{Re}(s) \leq 0 \, \,\text{ and} \,\,\mathrm{Im}(s) \neq 0 $$
 
$$\frac{1}{2 \pi i } \int_{\gamma - i \infty}^{\gamma + i \infty} \Gamma(z) \sin \left(\frac{\pi z}{2} \right) x^{-z} \ dz = \frac{1}{2 \pi i } \int_{- i \infty}^{ i \infty} \Gamma(z) \sin \left(\frac{\pi z}{2} \right) x^{-z} \ dz$$Shift the contour to the left.

Then assuming the integral evaluates to zero along the left side of the contour at $-\infty$,

$$ 2 \pi i \int_{- i \infty}^{ i \infty} \Gamma(z) \sin \left(\frac{\pi z}{2} \right) x^{-z} \ dz = \sum_{n=0}^{\infty} \text{Res} \left[ \Gamma (z) \sin \left(\frac{\pi z}{2} \right) x^{-z}, -(2n-1) \right] $$

since the zeros of $\sin \left(\frac{\pi z}{2} \right)$ cancel the simple poles of $\Gamma(z)$ at the negative even integers

$$ = \sum_{n=0}^{\infty} \frac{(-1)^{2n-1}}{(2n-1)!} (-1)^{n} x^{2n-1} = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!} x^{2n-1} = \sin x $$
 
Last edited:
It could be proved using the Stirling estimation that the integral vanishes at large arguments using a half-circle .
 
Usually one uses a rectangle because it's easier to understand the behavior of the gamma function on the sides of a rectangle than on a circle.

Basically when $z$ is very, very large in magnitude (and not on the negative real axis), $\Gamma (z)$ is approximately $\left( \frac{z}{e} \right)^z$.

But the issue here isn't the gamma function, it's the sine function.
 
Last edited:
We can use the following approximation for large complex argument

$$|\Gamma(a+ib)| \thicksim \sqrt{2 \pi} |b|^{a-1/2} \, e^{-|b| \pi/2} \,\,\,\,\,\,\, |b| \to \infty$$

I think using this we can see that the gamma dominates the sine function at complex values.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
2K