MHB What is the Relationship Between X and Y in these Mathematical Sequences?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
AI Thread Summary
The discussion explores the relationship between the mathematical sequences defined by X and Y. X is expressed as an alternating series involving factorials and powers of 2, while Y is another series with a similar structure but different coefficients. Participants humorously note that Y is simply the letter that follows X in the alphabet. The conversation highlights both the mathematical complexity and the light-hearted nature of the exchange. Ultimately, the relationship is acknowledged in a playful manner.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the relationship between $X$ and $Y$ if $$X= 1 + \frac{2}{1!}- \frac{2^3}{3!}+ \frac{2^5}{5!}- \frac{2^7}{7!}+\cdots ...$$ and $$Y= 2-\frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+\frac{10}{9!}-\cdots ...$$
 
Mathematics news on Phys.org
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
 
lfdahl said:
My suggested solution:
Comparing: \[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]- with the Taylor expansion of $sinx$ :\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]- implies: $X = 1 + sin(2)$Rewriting the other sum series,$ Y$:\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]Thus, $Y = cos(1)+sin(1)$Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
nice and remarkable!
 
Y is the letter in the alphabet just after X.

-Dan
 
lfdahl said:
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.

Very well done, lfdahl, and thanks for participating!

topsquark said:
Y is the letter in the alphabet just after X.

-Dan

LOL! Very funny, Dan!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top