MHB What is the Relationship Between X and Y in these Mathematical Sequences?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
The discussion explores the relationship between the mathematical sequences defined by X and Y. X is expressed as an alternating series involving factorials and powers of 2, while Y is another series with a similar structure but different coefficients. Participants humorously note that Y is simply the letter that follows X in the alphabet. The conversation highlights both the mathematical complexity and the light-hearted nature of the exchange. Ultimately, the relationship is acknowledged in a playful manner.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the relationship between $X$ and $Y$ if $$X= 1 + \frac{2}{1!}- \frac{2^3}{3!}+ \frac{2^5}{5!}- \frac{2^7}{7!}+\cdots ...$$ and $$Y= 2-\frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+\frac{10}{9!}-\cdots ...$$
 
Mathematics news on Phys.org
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
 
lfdahl said:
My suggested solution:
Comparing: \[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]- with the Taylor expansion of $sinx$ :\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]- implies: $X = 1 + sin(2)$Rewriting the other sum series,$ Y$:\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]Thus, $Y = cos(1)+sin(1)$Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
nice and remarkable!
 
Y is the letter in the alphabet just after X.

-Dan
 
lfdahl said:
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.

Very well done, lfdahl, and thanks for participating!

topsquark said:
Y is the letter in the alphabet just after X.

-Dan

LOL! Very funny, Dan!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K