MHB What is the Relationship Between X and Y in these Mathematical Sequences?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
The discussion explores the relationship between the mathematical sequences defined by X and Y. X is expressed as an alternating series involving factorials and powers of 2, while Y is another series with a similar structure but different coefficients. Participants humorously note that Y is simply the letter that follows X in the alphabet. The conversation highlights both the mathematical complexity and the light-hearted nature of the exchange. Ultimately, the relationship is acknowledged in a playful manner.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the relationship between $X$ and $Y$ if $$X= 1 + \frac{2}{1!}- \frac{2^3}{3!}+ \frac{2^5}{5!}- \frac{2^7}{7!}+\cdots ...$$ and $$Y= 2-\frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+\frac{10}{9!}-\cdots ...$$
 
Mathematics news on Phys.org
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
 
lfdahl said:
My suggested solution:
Comparing: \[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]- with the Taylor expansion of $sinx$ :\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]- implies: $X = 1 + sin(2)$Rewriting the other sum series,$ Y$:\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]Thus, $Y = cos(1)+sin(1)$Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
nice and remarkable!
 
Y is the letter in the alphabet just after X.

-Dan
 
lfdahl said:
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.

Very well done, lfdahl, and thanks for participating!

topsquark said:
Y is the letter in the alphabet just after X.

-Dan

LOL! Very funny, Dan!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K