What is the Relationship Between X and Y in these Mathematical Sequences?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary

Discussion Overview

The discussion revolves around the mathematical relationship between two sequences defined by the variables $X$ and $Y$. Participants explore potential connections and interpretations of these sequences, which appear to involve series expansions and factorial terms.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant presents the sequences for $X$ and $Y$ and asks for their relationship.
  • Another participant offers a solution but does not elaborate on the mathematical reasoning.
  • A third participant humorously suggests that $Y$ is simply the letter in the alphabet that follows $X$, indicating a non-mathematical interpretation.
  • A later reply acknowledges the humor in the previous comment while also expressing appreciation for the initial mathematical inquiry.

Areas of Agreement / Disagreement

There is no consensus on the mathematical relationship between $X$ and $Y$, as participants have presented differing interpretations, including both serious and humorous takes.

Contextual Notes

The discussion lacks detailed mathematical analysis or formal proofs regarding the sequences, and the interpretations vary widely, from serious mathematical inquiry to lighthearted commentary.

Who May Find This Useful

Participants interested in mathematical series, factorial sequences, or those looking for a light-hearted take on mathematical relationships may find this discussion engaging.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the relationship between $X$ and $Y$ if $$X= 1 + \frac{2}{1!}- \frac{2^3}{3!}+ \frac{2^5}{5!}- \frac{2^7}{7!}+\cdots ...$$ and $$Y= 2-\frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+\frac{10}{9!}-\cdots ...$$
 
Physics news on Phys.org
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
 
lfdahl said:
My suggested solution:
Comparing: \[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]- with the Taylor expansion of $sinx$ :\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]- implies: $X = 1 + sin(2)$Rewriting the other sum series,$ Y$:\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]Thus, $Y = cos(1)+sin(1)$Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
nice and remarkable!
 
Y is the letter in the alphabet just after X.

-Dan
 
lfdahl said:
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.

Very well done, lfdahl, and thanks for participating!

topsquark said:
Y is the letter in the alphabet just after X.

-Dan

LOL! Very funny, Dan!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K