What is the Relationship Between X and Y in these Mathematical Sequences?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
SUMMARY

The discussion centers on the mathematical sequences defined by the equations for X and Y. The sequence for X is expressed as $$X= 1 + \frac{2}{1!}- \frac{2^3}{3!}+ \frac{2^5}{5!}- \frac{2^7}{7!}+\cdots$$ while Y is defined as $$Y= 2-\frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+\frac{10}{9!}-\cdots$$. Participants concluded that Y is simply the letter following X in the alphabet, highlighting a playful relationship between the two variables.

PREREQUISITES
  • Understanding of factorial notation and its application in series.
  • Familiarity with mathematical sequences and convergence.
  • Basic knowledge of algebraic manipulation of series.
  • Recognition of symbolic representations in mathematics.
NEXT STEPS
  • Explore the convergence properties of series involving factorials.
  • Investigate the relationship between different mathematical sequences.
  • Learn about Taylor series and their applications in approximating functions.
  • Study the significance of symbolic representations in mathematical proofs.
USEFUL FOR

Mathematicians, educators, students studying sequences and series, and anyone interested in the playful aspects of mathematical relationships.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the relationship between $X$ and $Y$ if $$X= 1 + \frac{2}{1!}- \frac{2^3}{3!}+ \frac{2^5}{5!}- \frac{2^7}{7!}+\cdots ...$$ and $$Y= 2-\frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+\frac{10}{9!}-\cdots ...$$
 
Physics news on Phys.org
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
 
lfdahl said:
My suggested solution:
Comparing: \[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]- with the Taylor expansion of $sinx$ :\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]- implies: $X = 1 + sin(2)$Rewriting the other sum series,$ Y$:\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]Thus, $Y = cos(1)+sin(1)$Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.
nice and remarkable!
 
Y is the letter in the alphabet just after X.

-Dan
 
lfdahl said:
My suggested solution:

Comparing:
\[X = 1 + \frac{2^1}{1!}-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}+...\]

- with the Taylor expansion of $sinx$ :

\[sinx =^* x -\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\]

- implies: $X = 1 + sin(2)$

Rewriting the other sum series,$ Y$:

\[Y = 2 - \frac{4}{3!}+\frac{6}{5!}-\frac{8}{7!}+... \\\\ = 2 - \left ( \frac{3}{3!}+\frac{1}{3!} \right )+\left ( \frac{5}{5!}+\frac{1}{5!} \right )-\left ( \frac{7}{7!}+\frac{1}{7!} \right )+... \\\\ = 2 - \left ( \frac{1}{2!}+\frac{1}{3!} \right )+\left ( \frac{1}{4!}+\frac{1}{5!} \right )-\left ( \frac{1}{6!}+\frac{1}{7!} \right )+... \\\\ = \sum_{i=0}^{\infty}\frac{(-1)^i}{2i!} + \sum_{j=0}^{\infty}\frac{(-1)^j}{(2j+1)!} \\\\ = cos(1)+sin(1)\]

In the last identity (and at (*)) , I have used the following two series (warmest regards to wikipedia ;) ):

\[cosx= \sum_{i=0}^{\infty}\frac{(-1)^ix^{2i}}{2i!} \\\\ sinx = \sum_{j=0}^{\infty}\frac{(-1)^jx^{2j+1}}{(2j+1)!}\]

Thus, $Y = cos(1)+sin(1)$

Therefore, the relation between $X$ and $Y$ is: $X = Y^2$.

Very well done, lfdahl, and thanks for participating!

topsquark said:
Y is the letter in the alphabet just after X.

-Dan

LOL! Very funny, Dan!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K