What Is the Solution Space for Ax=b in Linear Algebra?

Click For Summary
In linear algebra, the solution space for the equation Ax=b can be understood through the fundamental subspaces of matrix A, including the null space, column space, and row space. The solution set for a given b may not always form a subspace, particularly when the system is inconsistent, leading to no solutions. However, when b=0, the solution space becomes a subspace known as the null space. For non-zero b, the solution set is referred to as a "linear manifold," which does not include the origin. Any solution to Ax=b can be expressed as a specific solution plus a vector from the null space, highlighting the relationship between these spaces.
dumbQuestion
Messages
124
Reaction score
0
When studying linear algebra when encountering a system Ax=b, I always read of the fundamental subspaces of A: N (the null space, all solutions x of Ax=0), the column or domain space of A: (the space spanned by the columns of A, or in other words, all possible b for Ax=b), the row space (the space spanned by the rows of A. I have a harder time wrapping my head around this one).


But I had another question. What about all the possible vectors x for a given b, such that Ax=b ? I get that this wouldn't always work because say, some systems are inconsistent and have no solutions so it would be empty in this case. It seems like this wouldn't necessarily be a subspace because it wouldn't necessarily be closed under addition (just because x is a solution to Ax=b doesn't mean A(2x)=b is a solution). But sometimes it would be a subspace. Because for example, the nullspace would just be the special case where b = 0, the 0 vector, and we know the nullspace is a subspace. Is this "solution space" given special importance? If so what's it called? (I keep calling it a solution space and I just don't know what the proper name of it is)
 
Physics news on Phys.org
dumbQuestion said:
When studying linear algebra when encountering a system Ax=b, I always read of the fundamental subspaces of A: N (the null space, all solutions x of Ax=0), the column or domain space of A: (the space spanned by the columns of A, or in other words, all possible b for Ax=b), the row space (the space spanned by the rows of A. I have a harder time wrapping my head around this one).


But I had another question. What about all the possible vectors x for a given b, such that Ax=b ?
If Ax= b, then A(x+ v)= Ax+ Av= b for any v in the null space of A.

I get that this wouldn't always work because say, some systems are inconsistent and have no solutions so it would be empty in this case. It seems like this wouldn't necessarily be a subspace because it wouldn't necessarily be closed under addition (just because x is a solution to Ax=b doesn't mean A(2x)=b is a solution). But sometimes it would be a subspace. Because for example, the nullspace would just be the special case where b = 0, the 0 vector, and we know the nullspace is a subspace. Is this "solution space" given special importance? If so what's it called? (I keep calling it a solution space and I just don't know what the proper name of it is)
The only time a "solution space" (which is, in fact, a standard name for it) is a subspace is when b= 0. In the case that b\ne 0, the "solution set" is a "linear manifold"- something like a line or plane in R3 that does NOTcontain the origin. It can be shown that if v is a vector satisfying Ax= b, then any solution of Ax= b can be written as v plus a vector satisfying Ax= 0. Since Ax= 0 is a subspace, it contains a basis so any solution to Ax= 0 can be written as a linear combination of basis vectors. And so any solution of Ax= b can be written as such linear combination of basis vectors plus v.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K