MHB What is the solution to the exponential series limit problem?

Click For Summary
The discussion focuses on evaluating the limit of the expression e^{-n}∑(n^k/k!) as n approaches infinity. Participants are encouraged to provide complete solutions to this exponential series limit problem. The challenge forum format allows for collaborative problem-solving, with hints and solutions hidden between spoiler tags to maintain the challenge's integrity. The limit is significant in understanding the behavior of exponential functions and series. Ultimately, the goal is to arrive at a clear and concise solution to the limit problem presented.
juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \lim_{n\rightarrow \infty}e^{-n}\sum^{n}_{k=0}\frac{n^k}{k!}$
 
Mathematics news on Phys.org
Suppose the "n" in \frac{n^k}{k!} were "x". Do you recognize \sum_{k= 0}^n \frac{x^k}{k!} as a partial sum for the power series \sum_{k=0}^\infty \frac{x^k}{k!}= e^x?
 
Last edited by a moderator:
HallsofIvy said:
Suppose the "n" in \frac{n^k}{k!} were "x". Do you recognize \sum_{k= 0}^n \frac{x^k}{k!} as a partial sum for the power series \sum_{k=0}^\infty \frac{x^k}{k!}= e^x?

So, the limit should be just 1, right?
 
Last edited by a moderator:
The problem was posted in the challenge forum. Please provide full solutions. And please hide them including any hints between spoiler tags.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K