- #1
Karol
- 1,380
- 22
Homework Statement
A disc of radius R and mass M lays on a smooth table. a smooth channel is carved along the diameter and on both ends there are masses m. one of the masses is attached with a wire to a small, almost weightless motor that is in the center. the other mass remains fixed in place. the disc can rotate round it's center using a smooth nail.
At t=0 the disc rotates at ω0 and the motor starts pulling the left mass with acceleration a0. what is the tension in the wire.
Now the nail is removed and at t=0 the disc again rotates at ω0 and the motor running. find the distance s(t) of the center of mass of the system relative to the center.
What is the angular velocity of the disc as a function of time. use s(t).
What is the tension in the wire at t=0
Homework Equations
Centrifugal force: ##F=m\frac{v^2}{R}##
Moment of inertia of a disc: ##I=\frac{1}{2}MR^2##
Distance with constant acceleration: ##s=\frac{1}{2}at^2##
The Attempt at a Solution
The tension at t=0 with the nail is the centripetal force+force due to linear acceleration:
$$F=m(\omega_0^2R+a_0)$$
Moments round the left, moving, mass gives the C.O.M. distance s(t):
$$m\left( R+\frac{1}{2}at_0^2 \right)+M\left( \frac{1}{2}at_0^2 \right)=(M+m)\left( \frac{1}{2}at_0^2+s \right)$$
$$\rightarrow s(t)=\frac{a_0 t^2}{4}$$
The angular velocity ω without the nail is from conservation of angular momentum.
I consider, for the last term on the right side of the equation, the distance of each mass from the new C.O.M.
$$\frac{1}{2}M\omega_0^2 R^2+2mR^2\omega_0^2=\frac{1}{2}M\omega^2+2m\left( \frac{R+s(t)}{2} \right)^2$$
$$\omega_0^2 R^2 \left( \frac{M}{2}+2m \right)=\omega^2\left( \frac{M}{2}R^2+2m\left( \frac{R+s(t)}{2} \right)^2 \right)$$
I think the tension force at this situation is similar to the first when the nail was.