MHB What is the transfer function for this system?

AI Thread Summary
In long-distance telephone communication, echoes can occur due to signal reflections, complicating the transmission process. The impulse response for this system is modeled as \( h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta(t - 3T) \), leading to the transfer function \( H(s) = \alpha\ e^{-sT} + \alpha^{3}\ e^{-3sT} \). It is noted that \( H(s) \) does not have any zeros or poles, as it consists solely of exponential terms representing pure delays. The only conditions under which \( H(s) \) could be zero involve specific values of \( \alpha \). This highlights the nature of the system's response in terms of signal delay rather than traditional pole-zero behavior.
Dustinsfl
Messages
2,217
Reaction score
5
In a long-distance telephone communication, an echo is sometimes encountered due to the transmitted signal being reflected at the receiver, sent back down the line, reflected again at the transmitter, and returned to the receiver. The impulse response for a system that modles this effect is shown in figure, where we have assumed tat only one echo is received. The parameter \(T\) corresponds to the one-way travel time along the communication channel, and the parameter \(\alpha\) represents the attenuation in amplitude between transmitter and receiver.
View attachment 2099
Determine the system function \(H(s)\) and associated region of convergence for the system.

How can I determine a transfer function from this?
 

Attachments

  • Screenshot from 2014-03-12 13:39:57.png
    Screenshot from 2014-03-12 13:39:57.png
    923 bytes · Views: 98
Mathematics news on Phys.org
dwsmith said:
In a long-distance telephone communication, an echo is sometimes encountered due to the transmitted signal being reflected at the receiver, sent back down the line, reflected again at the transmitter, and returned to the receiver. The impulse response for a system that modles this effect is shown in figure, where we have assumed tat only one echo is received. The parameter \(T\) corresponds to the one-way travel time along the communication channel, and the parameter \(\alpha\) represents the attenuation in amplitude between transmitter and receiver.
View attachment 2099
Determine the system function \(H(s)\) and associated region of convergence for the system.

How can I determine a transfer function from this?

Is...

$\displaystyle h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta (t - 3\ T)\ (1)$

... so that...

$\displaystyle H(s) = \alpha\ e^{- s\ T} + \alpha^{3}\ e^{- 3\ s\ T}\ (2)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is...

$\displaystyle h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta (t - 3\ T)\ (1)$

... so that...

$\displaystyle H(s) = \alpha\ e^{- s\ T} + \alpha^{3}\ e^{- 3\ s\ T}\ (2)$

Kind regards

$\chi$ $\sigma$

We know that exponential are never zero. How can we represent \(H\) in terms of zeros and poles? The only time I see that \(H\) can be zero is if \(\alpha = 0, \pm i\) but is that right?
 
dwsmith said:
We know that exponential are never zero. How can we represent \(H\) in terms of zeros and poles? The only time I see that \(H\) can be zero is if \(\alpha = 0, \pm i\) but is that right?

The answer is very simple: in this case H(s) doesn't have neither zeros neither poles but only 'pure delays'...

Kind regards

$\chi$ $\sigma$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top