MHB What is the transfer function for this system?

AI Thread Summary
In long-distance telephone communication, echoes can occur due to signal reflections, complicating the transmission process. The impulse response for this system is modeled as \( h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta(t - 3T) \), leading to the transfer function \( H(s) = \alpha\ e^{-sT} + \alpha^{3}\ e^{-3sT} \). It is noted that \( H(s) \) does not have any zeros or poles, as it consists solely of exponential terms representing pure delays. The only conditions under which \( H(s) \) could be zero involve specific values of \( \alpha \). This highlights the nature of the system's response in terms of signal delay rather than traditional pole-zero behavior.
Dustinsfl
Messages
2,217
Reaction score
5
In a long-distance telephone communication, an echo is sometimes encountered due to the transmitted signal being reflected at the receiver, sent back down the line, reflected again at the transmitter, and returned to the receiver. The impulse response for a system that modles this effect is shown in figure, where we have assumed tat only one echo is received. The parameter \(T\) corresponds to the one-way travel time along the communication channel, and the parameter \(\alpha\) represents the attenuation in amplitude between transmitter and receiver.
View attachment 2099
Determine the system function \(H(s)\) and associated region of convergence for the system.

How can I determine a transfer function from this?
 

Attachments

  • Screenshot from 2014-03-12 13:39:57.png
    Screenshot from 2014-03-12 13:39:57.png
    923 bytes · Views: 107
Mathematics news on Phys.org
dwsmith said:
In a long-distance telephone communication, an echo is sometimes encountered due to the transmitted signal being reflected at the receiver, sent back down the line, reflected again at the transmitter, and returned to the receiver. The impulse response for a system that modles this effect is shown in figure, where we have assumed tat only one echo is received. The parameter \(T\) corresponds to the one-way travel time along the communication channel, and the parameter \(\alpha\) represents the attenuation in amplitude between transmitter and receiver.
View attachment 2099
Determine the system function \(H(s)\) and associated region of convergence for the system.

How can I determine a transfer function from this?

Is...

$\displaystyle h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta (t - 3\ T)\ (1)$

... so that...

$\displaystyle H(s) = \alpha\ e^{- s\ T} + \alpha^{3}\ e^{- 3\ s\ T}\ (2)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is...

$\displaystyle h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta (t - 3\ T)\ (1)$

... so that...

$\displaystyle H(s) = \alpha\ e^{- s\ T} + \alpha^{3}\ e^{- 3\ s\ T}\ (2)$

Kind regards

$\chi$ $\sigma$

We know that exponential are never zero. How can we represent \(H\) in terms of zeros and poles? The only time I see that \(H\) can be zero is if \(\alpha = 0, \pm i\) but is that right?
 
dwsmith said:
We know that exponential are never zero. How can we represent \(H\) in terms of zeros and poles? The only time I see that \(H\) can be zero is if \(\alpha = 0, \pm i\) but is that right?

The answer is very simple: in this case H(s) doesn't have neither zeros neither poles but only 'pure delays'...

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top