MHB What is the transfer function for this system?

Click For Summary
In long-distance telephone communication, echoes can occur due to signal reflections, complicating the transmission process. The impulse response for this system is modeled as \( h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta(t - 3T) \), leading to the transfer function \( H(s) = \alpha\ e^{-sT} + \alpha^{3}\ e^{-3sT} \). It is noted that \( H(s) \) does not have any zeros or poles, as it consists solely of exponential terms representing pure delays. The only conditions under which \( H(s) \) could be zero involve specific values of \( \alpha \). This highlights the nature of the system's response in terms of signal delay rather than traditional pole-zero behavior.
Dustinsfl
Messages
2,217
Reaction score
5
In a long-distance telephone communication, an echo is sometimes encountered due to the transmitted signal being reflected at the receiver, sent back down the line, reflected again at the transmitter, and returned to the receiver. The impulse response for a system that modles this effect is shown in figure, where we have assumed tat only one echo is received. The parameter \(T\) corresponds to the one-way travel time along the communication channel, and the parameter \(\alpha\) represents the attenuation in amplitude between transmitter and receiver.
View attachment 2099
Determine the system function \(H(s)\) and associated region of convergence for the system.

How can I determine a transfer function from this?
 

Attachments

  • Screenshot from 2014-03-12 13:39:57.png
    Screenshot from 2014-03-12 13:39:57.png
    923 bytes · Views: 110
Mathematics news on Phys.org
dwsmith said:
In a long-distance telephone communication, an echo is sometimes encountered due to the transmitted signal being reflected at the receiver, sent back down the line, reflected again at the transmitter, and returned to the receiver. The impulse response for a system that modles this effect is shown in figure, where we have assumed tat only one echo is received. The parameter \(T\) corresponds to the one-way travel time along the communication channel, and the parameter \(\alpha\) represents the attenuation in amplitude between transmitter and receiver.
View attachment 2099
Determine the system function \(H(s)\) and associated region of convergence for the system.

How can I determine a transfer function from this?

Is...

$\displaystyle h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta (t - 3\ T)\ (1)$

... so that...

$\displaystyle H(s) = \alpha\ e^{- s\ T} + \alpha^{3}\ e^{- 3\ s\ T}\ (2)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is...

$\displaystyle h(t) = \alpha\ \delta(t - T) + \alpha^{3}\ \delta (t - 3\ T)\ (1)$

... so that...

$\displaystyle H(s) = \alpha\ e^{- s\ T} + \alpha^{3}\ e^{- 3\ s\ T}\ (2)$

Kind regards

$\chi$ $\sigma$

We know that exponential are never zero. How can we represent \(H\) in terms of zeros and poles? The only time I see that \(H\) can be zero is if \(\alpha = 0, \pm i\) but is that right?
 
dwsmith said:
We know that exponential are never zero. How can we represent \(H\) in terms of zeros and poles? The only time I see that \(H\) can be zero is if \(\alpha = 0, \pm i\) but is that right?

The answer is very simple: in this case H(s) doesn't have neither zeros neither poles but only 'pure delays'...

Kind regards

$\chi$ $\sigma$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
9K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
3K
Replies
8
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K