I What is the true meaning of a tangent in mathematics?

  • Thread starter Thread starter Greg Bernhardt
  • Start date Start date
  • Tags Tags
    Tangent
Click For Summary
The discussion centers on the concept of a tangent in mathematics, specifically its relationship to derivatives. It highlights that the term "tangent" can refer to various mathematical constructs, including the function mapping, the slope at a specific point, and the Jacobi matrix. The conversation suggests that a more precise understanding of these concepts would enhance the transition to calculus in educational settings. In the U.S., students often misinterpret calculus problems regarding tangents, mistakenly providing only the derivative rather than the equation of the tangent line. A clearer explanation of tangents could improve comprehension and application in calculus.
Messages
19,816
Reaction score
10,802
From @fresh_42's Insight
https://www.physicsforums.com/insights/10-math-things-we-all-learnt-wrong-at-school/

Please discuss!

Yes, it is the derivative of ##y.## But what is meant by that? Obviously we have a function ##x \longmapsto y=y(x)## and a derivative $$y'=y'(x)=\dfrac{dy}{dx}=\left. \dfrac{d}{dx}\right|_{x=a}y(x)=y(a+h)-J(h)-r(h)=y'(a) $$ It now isn't obvious at all what is meant: the function ##x\longmapsto y'(x)##, the value of the slope ##y'(a)##, or the linear map ##J,## the Jacobi matrix, the tangent in a way? Fact is, all of them, as needed according to the situation. I don't say we should teach tangent bundles and sections, but a little bit more accuracy would smoothen the step to calculus at college.
 
Last edited:
Mathematics news on Phys.org
In the USA, a calculus problem asking for the tangent of ##f(x)## at ##x = a## is understood to ask for the equation of a line tangent to the graph at ##f(x)## at ##x = a## so ##f'(x)|_{x=a}## is a wrong answer.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K