MHB What is the value of the double integral?

Click For Summary
The discussion centers on evaluating a double integral defined by the limits and function provided by Erin. The integral is expressed as the sum of two parts, with the inner integral needing to be solved first. Participants suggest rewriting the integral and provide guidance on using LaTeX for proper notation. Erin expresses difficulty in integrating the resulting expression with respect to y, and further assistance is offered, including a substitution method for simplification. The conversation highlights the collaborative effort to solve a complex mathematical problem.
erin
Messages
6
Reaction score
0
Hi,

I need to evaluate the following double integral. I have tried direct integration but the answer is too complicated for it to be a viable method.

First integral is from 0 to (1-y^2) function is (x^2+y^2)dx.

Second integral is from 0 to 1 dy.

I can't figure out how to use the maths thing on the right.

Cheers,
Erin
 
Last edited:
Physics news on Phys.org
erin said:
Hi,

I need to evaluate the following double integral. I have tried direct integration but the answer is too complicated for it to be a viable method.

First integral is from 0 to (1-y^2) function is (x^2+y^2)dx.

Second integral is from 0 to 1 dy.

I can't figure out how to use the maths thing on the right.

Cheers,
Erin

Direct integration works, why do you think it doesn't?
 
Well obviously if I knew how to do it I wouldn't have posted. Your answer was very helpful. Thank you. I wish I was as smart as you.
 
erin said:
Hi,

I need to evaluate the following double integral. I have tried direct integration but the answer is too complicated for it to be a viable method.

First integral is from 0 to (1-y^2) function is (x^2+y^2)dx.

Second integral is from 0 to 1 dy.

I can't figure out how to use the maths thing on the right.

Cheers,
Erin

Hi Erin!

If I understand correctly, you want to evaluate:
$$\int_0^{1-y^2} (x^2+y^2)dx$$
It can be rewritten as:
$$\int_0^{1-y^2} x^2 dx + \int_0^{1-y^2} y^2 dx$$

How far can you get integrating:
$$\int x^2 dx$$
?
 
erin said:
Hi,

I need to evaluate the following double integral. I have tried direct integration but the answer is too complicated for it to be a viable method.

First integral is from 0 to (1-y^2) function is (x^2+y^2)dx.

Second integral is from 0 to 1 dy.

I can't figure out how to use the maths thing on the right.

Cheers,
Erin
Wellcome on MHB erin!...

... using the appropriate notation the integral You want to compute is...

$\displaystyle \int_{0}^{1} \int_{0}^{1 - y^{2}} (x^{2} + y^{2})\ dx\ dy\ (1)$

... isn't it?...

Kind regards

$\chi$ $\sigma$
 
Hi chisigma,

yes that is the integral I want to evaluate. Thanks for writing it out properly - are there instructions for how to use the maths symbols somewhere on this forum? I can't find them.

Cheers,
Erin
 
erin said:
Hi chisigma,

yes that is the integral I want to evaluate. Thanks for writing it out properly - are there instructions for how to use the maths symbols somewhere on this forum? I can't find them.

Cheers,
Erin

You can find aqn excellent tutorial om Latx in...

mathhelpboards.com/latex-help-discussion-26/

... regarding the integral You have first to solve the 'inner integral'...

$\displaystyle f(y) = \int_{0}^{1 - y^{2}} (x^{+2} + y^{2})\ d x\ (1)$

... and then solve the 'outer integral'...

$\displaystyle I= \int_{0}^{1} f(y)\ d y\ (2)$

... are You able to do that?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
You can find aqn excellent tutorial om Latx in...

mathhelpboards.com/latex-help-discussion-26/

So sorry, the upper limit is the square root, not just 1-y^2.

$\displaystyle f(y) = \int_{0}^{\sqrt{1 - y^{2}}} (x^{+2} + y^{2})\ d x\ (1)$

When doing the inner integral I get:
$\displaystyle I= \int_{0}^{1} ((1/3*(1-y^{2})^{3/2}+\sqrt{(1-y^{2})}*y^{2}) d y\ (1)$

I am having difficulty integrating this part with respect to y.
 
erin said:
chisigma said:
You can find aqn excellent tutorial om Latx in...

mathhelpboards.com/latex-help-discussion-26/

So sorry, the upper limit is the square root, not just 1-y^2.

$\displaystyle f(y) = \int_{0}^{\sqrt{1 - y^{2}}} (x^{+2} + y^{2})\ d x\ (1)$

When doing the inner integral I get:
$\displaystyle I= \int_{0}^{1} ((1/3*(1-y^{2})^{3/2}+\sqrt{(1-y^{2})}*y^{2}) d y\ (1)$

I am having difficulty integrating this part with respect to y.

$\displaystyle \begin{align*} \int_0^1{ \frac{\left( \sqrt{1 - y^2} \right) ^3}{3} + y^2\,\sqrt{1 - y^2}\,\mathrm{d}y } &= \int_0^1{ \frac{\left( 1 - y^2 \right) \sqrt{1 - y^2} }{3} + y^2 \,\sqrt{1 - y^2}\,\mathrm{d}y } \\ &= \frac{1}{3} \int_0^1{ \left( 1 - y^2 \right) \sqrt{1 - y^2} + 3y^2 \,\sqrt{1 - y^2}\,\mathrm{d}y } \\ &= \frac{1}{3} \int_0^1{ \sqrt{1 - y^2} - y^2\,\sqrt{1 - y^2} + 3y^2\,\sqrt{1 - y^2} \,\mathrm{d}y } \\ &= \int_0^1{ \sqrt{1-y^2} + 2y^2\,\sqrt{1-y^2}\,\mathrm{d}y } \end{align*}$

Now to continue you will need to make the substitution $\displaystyle \begin{align*} y = \sin{(\theta )} \implies \mathrm{d}y = \cos{(\theta )} \,\mathrm{d}\theta \end{align*}$.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K